Search results for: Sensorless FO controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 842

Search results for: Sensorless FO controller

782 A Novel Fuzzy Logic Based Controller to Adjust the Brightness of the Television Screen with Respect to Surrounding Light

Authors: A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

One of the major cause of eye strain and other problems caused while watching television is the relative illumination between the screen and its surrounding. This can be overcome by adjusting the brightness of the screen with respect to the surrounding light. A controller based on fuzzy logic is proposed in this paper. The fuzzy controller takes in the intensity of light surrounding the screen and the present brightness of the screen as input. The output of the fuzzy controller is the grid voltage corresponding to the required brightness. This voltage is given to CRT and brightness is controller dynamically. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Fuzzy controller, Grid voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
781 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Authors: Martha C. Orazulume, Jibril D. Jiya

Abstract:

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
780 Microwave Drying System with High-Tech Phase Controller: A Modified Applicator

Authors: A. S. Jambhale, B. V. Barbadekar

Abstract:

Microwave energy can be used for drying purpose. It is unique process. It is distinctly different from conventional drying process. It is advantageous over conventional drying / heating processes. When microwave energy is used for drying purpose, the process can be accelerated with a better control to achieve uniform heating, more conversion efficiency, selective drying and ultimately improved product quality of the output. Also, less floor space and compact system are the added advantages. Existing low power microwave drying system is to be modified with suitable applicator. Appropriate sensors are to be used to measure parameters like moisture, temperature, weight of sample. Suitable high tech controller is to be used to control microwave power continuously from minimum to maximum. Phase - controller, cycle - controller and PWM - controller are some of the advanced power control techniques. It has been proposed to work on turmeric using high-tech phase controller to control the microwave power conveniently. The drying of turmeric with microwave energy employing phase controller gives better results as formulated in this paper and hence new approach of processing turmeric will open future doors of profit making to allied industries and the farmers.

Keywords: Applicator, microwave drying, phase controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
779 Low-MAC FEC Controller for JPEG2000 Image Transmission Over IEEE 802.15.4

Authors: Kyu-Yeul Wang, Sang-Seol Lee, Jea-Yeon Song, Jea-Young Choi, Seong-Seob Shin, Dong-Sun Kim, Duck-Jin Chung

Abstract:

In this paper, we propose the low-MAC FEC controller for practical implementation of JPEG2000 image transmission using IEEE 802.15.4. The proposed low-MAC FEC controller has very small HW size and spends little computation to estimate channel state. Because of this advantage, it is acceptable to apply IEEE 802.15.4 which has to operate more than 1 year with battery. For the image transmission, we integrate the low-MAC FEC controller and RCPC coder in sensor node of LR-WPAN. The modified sensor node has increase of 3% hardware size than conventional zigbee sensor node.

Keywords: FEC, IEEE 802.15.4, JPEG2000, low-MAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
778 Optimal Supplementary Damping Controller Design for TCSC Employing RCGA

Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, C. Ardil

Abstract:

Optimal supplementary damping controller design for Thyristor Controlled Series Compensator (TCSC) is presented in this paper. For the proposed controller design, a multi-objective fitness function consisting of both damping factors and real part of system electromachanical eigenvalue is used and Real- Coded Genetic Algorithm (RCGA) is employed for the optimal supplementary controller parameters. The performance of the designed supplementary TCSC-based damping controller is tested on a weakly connected power system with different disturbances and loading conditions with parameter variations. Simulation results are presented and compared with a conventional power system stabilizer and also with the TCSC-based supplementary controller when the controller parameters are not optimized to show the effectiveness and robustness of the proposed approach over a wide range of loading conditions and disturbances.

Keywords: Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Thyristor Controlled Series Compensator (TCSC), Damping Controller, Power System Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
777 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination

Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili

Abstract:

One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.

Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
776 Control and Simulation of FOPDT Food Processes with Constraints using PI Controller

Authors: M.Y. Pua, M.C. Tan, L.W. Tan, N. Ab.Aziz, F.S. Taip

Abstract:

The most common type of controller being used in the industry is PI(D) controller which has been used since 1945 and is still being widely used due to its efficiency and simplicity. In most cases, the PI(D) controller was tuned without taking into consideration of the effect of actuator saturation. In real processes, the most common actuator which is valve will act as constraint and restrict the controller output. Since the controller is not designed to encounter saturation, the process may windup and consequently resulted in large oscillation or may become unstable. Usually, an antiwindup compensator is added to the feedback control loop to reduce the deterioration effect of integral windup. This research aims to specifically control processes with constraints. The proposed method was applied to two different types of food processes, which are blending and spray drying. Simulations were done using MATLAB and the performances of the proposed method were compared with other conventional methods. The proposed technique was able to control the processes and avoid saturation such that no anti windup compensator is needed.

Keywords: constraints, food process control, first order plusdead time process, PI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
775 Design and Implementation of a Fan Coil Unit Controller Based on the Duty Ratio Fuzzy Method

Authors: Liang Zhao, Jili Zhang, Kai Li

Abstract:

A microcontroller-based fan coil unit (FCU) fuzzy controller is designed and implemented in this paper. The controller employs the concept of duty ratio on the electric valve control, which could make full use of the cooling and dehumidifying capacity of the FCU when the valve is off. The traditional control method and its limitations are analyzed. The hardware and software design processes are introduced in detail. The experimental results show that the proposed method is more energy efficient compared to the traditional controlling strategy. Furthermore, a more comfortable room condition could be achieved by the proposed method. The proposed low-cost FCU fuzzy controller deserves to be widely used in engineering applications.

Keywords: Fan coil unit, duty ratio, fuzzy controller, experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
774 Speed Sensorless IFOC of PMSM Based On Adaptive Luenberger Observer

Authors: Grouz Faten, Sbita Lassaâd

Abstract:

In this paper, Speed Sensorless Indirect Field Oriented Control (IFOC) of a Permanent Magnet Synchronous machine (PMSM) is studied. The closed loop scheme of the drive system utilizes fuzzy speed and current controllers. Due to the well known drawbacks of the speed sensor, an algorithm is proposed in this paper to eliminate it. In fact, based on the model of the PMSM, the stator currents and rotor speed are estimated simultaneously using adaptive Luenberger observer for currents and MRAS (Model Reference Adaptive System) observer for rotor speed. To overcome the sensivity of this algorithm against parameter variation, adaptive for on line stator resistance tuning is proposed. The validity of the proposed method is verified by an extensive simulation work.

Keywords: PMSM, Indirect Field Oriented Control, fuzzy speed and currents controllers, Adaptive Luenberger observer, MRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3422
773 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control

Authors: T. Hussein

Abstract:

In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.

Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3739
772 Optimal Based Damping Controllers of Unified Power Flow Controller Using Adaptive Tabu Search

Authors: Rungnapa Taithai, Anant Oonsivilai

Abstract:

This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.

Keywords: Adaptive Tabu Search (ATS), damping controller, Single Machine Infinite Bus (SMIB), Unified Power Flow Controller (UPFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
771 Sloshing Control in Tilting Phases of the Pouring Process

Authors: Maria P. Tzamtzi, Fotis N. Koumboulis

Abstract:

We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.

Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
770 Design of Local Interconnect Network Controller for Automotive Applications

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.

Keywords: Local interconnect network, controller, transceiver, processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
769 Sliding Mode Control of an Internet Teleoperated PUMA 600 Robot

Authors: Abdallah Ghoul, Bachir Ouamri, Ismail Khalil Bousserhane

Abstract:

In this paper, we have developed a sliding mode controller for PUMA 600 manipulator robot, to control the remote robot a teleoperation system was developed. This system includes two sites, local and remote. The sliding mode controller is installed at the remote site. The client asks for a position through an interface and receives the real positions after running of the task by the remote robot. Both sites are interconnected via the Internet. In order to verify the effectiveness of the sliding mode controller, that is compared with a classic PID controller. The developed approach is tested on a virtual robot. The results confirmed the high performance of this approach.

Keywords: Internet, manipulator robot, PID controller, remote control, sliding mode, teleoperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
768 The Validity Range of LSDP Robust Controller by Exploiting the Gap Metric Theory

Authors: Ali Ameur Haj Salah, Tarek Garna, Hassani Messaoud

Abstract:

This paper attempts to define the validity domain of LSDP (Loop Shaping Design Procedure) controller system, by determining the suitable uncertainty region, so that linear system be stable. Indeed the LSDP controller cannot provide stability for any perturbed system. For this, we will use the gap metric tool that is introduced into the control literature for studying robustness properties of feedback systems with uncertainty. A 2nd order electric linear system example is given to define the validity domain of LSDP controller and effectiveness gap metric.

Keywords: LSDP, Gap metric, Robust Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
767 Stabilization and Control of a UAV Flight Attitude Angles using the Backstepping Method

Authors: Mihai Lungu

Abstract:

The paper presents the design of a mini-UAV attitude controller using the backstepping method. Starting from the nonlinear dynamic equations of the mini-UAV, by using the backstepping method, the author of this paper obtained the expressions of the elevator, rudder and aileron deflections, which stabilize the UAV, at each moment, to the desired values of the attitude angles. The attitude controller controls the attitude angles, the angular rates, the angular accelerations and other variables that describe the UAV longitudinal and lateral motions. To design the nonlinear controller, by using the backstepping technique, the nonlinear equations and the Lyapunov analysis have been directly used. The designed controller has been implemented in Matlab/Simulink environment and its effectiveness has been tested with a campaign of numerical simulations using data from the UAV flight tests. The obtained results are very good and they are better than the ones found in previous works.

Keywords: Attitude angles, Backstepping, Controller, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
766 Neural Network Control of a Biped Robot Model with Composite Adaptation Low

Authors: Ahmad Forouzantabar

Abstract:

this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.

Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
765 Markov Game Controller Design Algorithms

Authors: Rajneesh Sharma, M. Gopal

Abstract:

Markov games are a generalization of Markov decision process to a multi-agent setting. Two-player zero-sum Markov game framework offers an effective platform for designing robust controllers. This paper presents two novel controller design algorithms that use ideas from game-theory literature to produce reliable controllers that are able to maintain performance in presence of noise and parameter variations. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. Our approach generates an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment, and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed controller architectures attempt to improve controller reliability by a gradual mixing of algorithmic approaches drawn from the game theory literature and the Minimax-Q Markov game solution approach, in a reinforcement-learning framework. We test the proposed algorithms on a simulated Inverted Pendulum Swing-up task and compare its performance against standard Q learning.

Keywords: Reinforcement learning, Markov Decision Process, Matrix Games, Markov Games, Smooth Fictitious play, Controller, Inverted Pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
764 Design of a Robust Controller for AGC with Combined Intelligence Techniques

Authors: R. N. Patel, S. K. Sinha, R. Prasad

Abstract:

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.

Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
763 Coordinated Q–V Controller for Multi-machine Steam Power Plant: Design and Validation

Authors: Jasna Dragosavac, Žarko Janda, J.V. Milanović, Dušan Arnautović

Abstract:

This paper discusses coordinated reactive power - voltage (Q-V) control in a multi machine steam power plant. The drawbacks of manual Q-V control are briefly listed, and the design requirements for coordinated Q-V controller are specified. Theoretical background and mathematical model of the new controller are presented next followed by validation of developed Matlab/Simulink model through comparison with recorded responses in real steam power plant and description of practical realisation of the controller. Finally, the performance of commissioned controller is illustrated on several examples of coordinated Q-V control in real steam power plant and compared with manual control.

Keywords: Coordinated Voltage Control, Power Plant Control, Reactive Power Control, Sensitivity Matrix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
762 Fractional-Order PI Controller Tuning Rules for Cascade Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.

Keywords: Fractional calculus, fractional–order proportional integral controller, cascade control system, internal model control approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
761 Design of Gain Scheduled Fuzzy PID Controller

Authors: Leehter Yao, Chin-Chin Lin

Abstract:

An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.

Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4061
760 IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations

Authors: A. Safari, H. Shayeghi, H. A. Shayanfar

Abstract:

On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.

Keywords: UPFC, IPSO, output feedback Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
759 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
758 Fuzzy Logic Speed Control of Three Phase Induction Motor Drive

Authors: P.Tripura, Y.Srinivasa Kishore Babu

Abstract:

This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.

Keywords: Fuzzy Logic, Intelligent controllers, Conventional PI controller, Induction motor drives, indirect vector control, Speed control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6499
757 MPSO based Model Order Formulation Scheme for Discrete PID Controller Design

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes the novel model order formulation scheme to design a discrete PID controller for higher order linear time invariant discrete systems. Modified PSO (MPSO) based model order formulation technique has used to obtain the successful formulated second order system. PID controller is tuned to meet the desired performance specification by using pole-zero cancellation and proposed design procedures. Proposed PID controller is attached with both higher order system and formulated second order system. System specifications are tabulated and closed loop response is observed for stabilization process. The proposed method is illustrated through numerical examples from literature.

Keywords: Discrete PID controller, Model Order Formulation, Modified Particle Swarm Optimization, Pole-Zero Cancellation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
756 Robust Cerebellar Model Articulation Controller Design for Flight Control Systems

Authors: Y. J. Huang, T. C. Kuo, B. W. Hong, B. C. Wu

Abstract:

This paper presents a robust proportionalderivative (PD) based cerebellar model articulation controller (CMAC) for vertical take-off and landing flight control systems. Successful on-line training and recalling process of CMAC accompanying the PD controller is developed. The advantage of the proposed method is mainly the robust tracking performance against aerodynamic parametric variation and external wind gust. The effectiveness of the proposed algorithm is validated through the application of a vertical takeoff and landing aircraft control system.

Keywords: vertical takeoff and landing, cerebellar modelarticulation controller, proportional-derivative control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
755 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus

Abstract:

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
754 Application of Genetic Algorithm for FACTS-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel

Abstract:

In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..

Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
753 Optimization of the Control Scheme for Human Extremity Exoskeleton

Authors: Yang Li, Xiaorong Guan, Cheng Xu

Abstract:

In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.

Keywords: Human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998