Search results for: Group delay approximation
2340 A Characterized and Optimized Approach for End-to-End Delay Constrained QoS Routing
Authors: P.S.Prakash, S.Selvan
Abstract:
QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we analyzed two algorithms namely Characterized Delay Constrained Routing (CDCR) and Optimized Delay Constrained Routing (ODCR). The CDCR algorithm dealt an approach for delay constrained routing that captures the trade-off between cost minimization and risk level regarding the delay constraint. The ODCR which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.Keywords: QoS, Delay, Routing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12742339 A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation
Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping
Abstract:
In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation. The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported.Keywords: Explicit group method, finite difference, Helmholtz equation, rotated grid, standard grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11662338 Bifurcations of a Delayed Prototype Model
Authors: Changjin Xu
Abstract:
In this paper, a delayed prototype model is studied. Regarding the delay as a bifurcation parameter, we prove that a sequence of Hopf bifurcations will occur at the positive equilibrium when the delay increases. Using the normal form method and center manifold theory, some explicit formulae are worked out for determining the stability and the direction of the bifurcated periodic solutions. Finally, Computer simulations are carried out to explain some mathematical conclusions.
Keywords: Prototype model, Stability, Hopf bifurcation, Delay, Periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622337 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: Terrestrial-satellite networks, latency, on-orbit satellite payload, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8882336 Sliding Mode Control for Active Suspension System with Actuator Delay
Authors: Aziz Sezgin, Yuksel Hacioglu, Nurkan Yagiz
Abstract:
Sliding mode controller for a vehicle active suspension system is designed in this study. The widely used quarter car model is preferred and it is aimed to improve the ride comfort of the passengers. The effect of the actuator time delay, which may arise due to the information processing, sensors or actuator dynamics, is also taken into account during the design of the controller. A sliding mode controller was designed that has taken into account the actuator time delay by using Smith predictor. The successful performance of the designed controller is confirmed via numerical results.Keywords: Sliding mode control, active suspension system, actuator time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412335 Optimization of Communication Protocols by stochastic Delay Mechanisms
Authors: J. Levendovszky, I. Koncz, P. Boros
Abstract:
The paper is concerned with developing stochastic delay mechanisms for efficient multicast protocols and for smooth mobile handover processes which are capable of preserving a given Quality of Service (QoS). In both applications the participating entities (receiver nodes or subscribers) sample a stochastic timer and generate load after a random delay. In this way, the load on the networking resources is evenly distributed which helps to maintain QoS communication. The optimal timer distributions have been sought in different p.d.f. families (e.g. exponential, power law and radial basis function) and the optimal parameter have been found in a recursive manner. Detailed simulations have demonstrated the improvement in performance both in the case of multicast and mobile handover applications.
Keywords: Multicast communication, stochactic delay mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15492334 Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames
Authors: A. M. Tahsini
Abstract:
Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that just in stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations.
Keywords: Diffusion flame, Ignition delay time, Mixing layer, Numerical simulation, Premixed flame, Supersonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19792333 Approximation for Average Error Probability of BPSK in the Presence of Phase Error
Authors: Yeonsoo Jang, Dongweon Yoon, Ki Ho Kwon, Jaeyoon Lee, Wooju Lee
Abstract:
Phase error in communications systems degrades error performance. In this paper, we present a simple approximation for the average error probability of the binary phase shift keying (BPSK) in the presence of phase error having a uniform distribution on arbitrary intervals. For the simple approximation, we use symmetry and periodicity of a sinusoidal function. Approximate result for the average error probability is derived, and the performance is verified through comparison with simulation result.Keywords: Average error probability, Phase shift keying, Phase error
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20492332 An Approach for Reducing the End-to-end Delay and Increasing Network Lifetime in Mobile Adhoc Networks
Authors: R. Asokan, A. M. Natarajan
Abstract:
Mobile adhoc network (MANET) is a collection of mobile devices which form a communication network with no preexisting wiring or infrastructure. Multiple routing protocols have been developed for MANETs. As MANETs gain popularity, their need to support real time applications is growing as well. Such applications have stringent quality of service (QoS) requirements such as throughput, end-to-end delay, and energy. Due to dynamic topology and bandwidth constraint supporting QoS is a challenging task. QoS aware routing is an important building block for QoS support. The primary goal of the QoS aware protocol is to determine the path from source to destination that satisfies the QoS requirements. This paper proposes a new energy and delay aware protocol called energy and delay aware TORA (EDTORA) based on extension of Temporally Ordered Routing Protocol (TORA).Energy and delay verifications of query packet have been done in each node. Simulation results show that the proposed protocol has a higher performance than TORA in terms of network lifetime, packet delivery ratio and end-to-end delay.Keywords: EDTORA, Mobile Adhoc Networks, QoS, Routing, TORA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23902331 Delay-independent Stabilization of Linear Systems with Multiple Time-delays
Authors: Ping He, Heng-You Lan, Gong-Quan Tan
Abstract:
The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632330 Stability Verification for Bilateral Teleoperation System with Variable Time Delay
Authors: M. Sallam, A. Ramadan, M. Fanni, M. Abdellatif
Abstract:
Time delay in bilateral teleoperation system was introduced as a sufficient reason to make the system unstable or certainly degrade the system performance. In this paper, simulations and experimental results of implementing p-like control scheme, under different ranges of variable time delay, will be presented to verify a certain criteria, which guarantee the system stability and position tracking. The system consists of two Phantom premium 1.5A devices. One of them acts as a master and the other acts as a slave. The study includes deriving the Phantom kinematic and dynamic model, establishing the link between the two Phantoms over Simulink in Matlab, and verifying the stability criteria with simulations and real experiments.Keywords: bilateral teleoperation, Phantom premium 1.5, varying time delay
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15292329 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay
Authors: Cemil Tunc
Abstract:
In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.
Keywords: Instability, Lyapunov-Krasovskii functional, delay differential equation, fifth order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14532328 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity
Authors: Mujtaba Roshan, John A. Schormans
Abstract:
Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.
Keywords: Quality of experience, quality of service, packet loss probability, network capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9412327 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14832326 Permanence and Almost Periodic Solutions to an Epidemic Model with Delay and Feedback Control
Authors: Chenxi Yang, Zhouhong Li
Abstract:
This paper is concerned with an epidemic model with delay. By using the comparison theorem of the differential equation and constructing a suitable Lyapunov functional, Some sufficient conditions which guarantee the permeance and existence of a unique globally attractive positive almost periodic solution of the model are obtain. Finally, an example is employed to illustrate our result.
Keywords: Permanence, Almost periodic solution, Epidemic model, Delay, Feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15502325 A Study on the Least Squares Reduced Parameter Approximation of FIR Digital Filters
Authors: S. Seyedtabaii, E. Seyedtabaii
Abstract:
Rounding of coefficients is a common practice in hardware implementation of digital filters. Where some coefficients are very close to zero or one, as assumed in this paper, this rounding action also leads to some computation reduction. Furthermore, if the discarded coefficient is of high order, a reduced order filter is obtained, otherwise the order does not change but computation is reduced. In this paper, the Least Squares approximation to rounded (or discarded) coefficient FIR filter is investigated. The result also succinctly extended to general type of FIR filters.Keywords: Digital filter, filter approximation, least squares, model order reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16012324 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation
Authors: Diogo Silva, Fadul Rodor, Carlos Moraes
Abstract:
This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9782323 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.
Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3662322 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays
Authors: Mengzhuo Luo, Shouming Zhong
Abstract:
This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.
Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19272321 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay
Authors: Caigen Zhou, Haibo Jiang
Abstract:
The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16962320 Localising Gauss's Law and the Electric Charge Induction on a Conducting Sphere
Authors: Sirapat Lookrak, Anol Paisal
Abstract:
Space debris has numerous manifestations including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane so the Gaussian surface is a very small cylinder and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless manoeuvring space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done.
Keywords: Near-field approximation, far-field approximation, localized Gauss’s law, electric charge density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4022319 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: Bootstrap, Edgeworth approximation, independent and Identical distributed, quantile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4412318 Stability Analysis of Fractional Order Systems with Time Delay
Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li
Abstract:
In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.
Keywords: Fractional order systems, Time delay, Characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36612317 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two dimensional Helmholtz equation. The formulation is based on the nine-point fourth order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.
Keywords: Explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20802316 A New Proportional - Pursuit Coupled Guidance Law with Actuator Delay Compensation
Authors: Chien-Chun Kung, Feng-Lung Chiang, Kuei-Yi Chen, Hsien-Wen Wei, Ming-Yi Huang, Cai-Ming Huang, Sheng-Kai Wang
Abstract:
The aim of this paper is to present a new three-dimensional proportional-pursuit coupled (PP) guidance law to track highly maneuverable aircraft. Utilizing a 3-D polar coordinate frame, the PP guidance law is formed by collecting proportional navigation guidance in Z-R plane and pursuit guidance in X-Y plane. Feedback linearization control method to solve the guidance accelerations is used to implement PP guidance. In order to compensate the actuator time delay, the time delay compensated version of PP guidance law (CPP) was derived and proved the effectiveness of modifying the problem of high acceleration in the final phase of pursuit guidance and improving the weak robustness of proportional navigation. The simulation results for intercepting Max G turn situation show that the proposed proportional-pursuit coupled guidance law guidance law with actuator delay compensation (CPP) possesses satisfactory robustness and performance.Keywords: Feedback linearization control, time delay, guidance law, robustness, proportional navigation guidance, pursuit guidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28772315 Probabilistic Modeling of Network-induced Delays in Networked Control Systems
Authors: Manoj Kumar, A.K. Verma, A. Srividya
Abstract:
Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17702314 Bifurcations for a FitzHugh-Nagumo Model with Time Delays
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, a FitzHugh-Nagumo model with time delays is investigated. The linear stability of the equilibrium and the existence of Hopf bifurcation with delay τ is investigated. By applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Numerical simulations for justifying the theoretical results are illustrated. Finally, main conclusions are given.
Keywords: FitzHugh-Nagumo model, Time delay, Stability, Hopf bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16902313 Multiresolution Approach to Subpixel Registration by Linear Approximation of PSF
Authors: Erol Seke, Kemal Özkan
Abstract:
Linear approximation of point spread function (PSF) is a new method for determining subpixel translations between images. The problem with the actual algorithm is the inability of determining translations larger than 1 pixel. In this paper a multiresolution technique is proposed to deal with the problem. Its performance is evaluated by comparison with two other well known registration method. In the proposed technique the images are downsampled in order to have a wider view. Progressively decreasing the downsampling rate up to the initial resolution and using linear approximation technique at each step, the algorithm is able to determine translations of several pixels in subpixel levels.
Keywords: Point Spread Function, Subpixel translation, Superresolution, Multiresolution approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16632312 Explicit Delay and Power Estimation Method for CMOS Inverter Driving on-Chip RLC Interconnect Load
Authors: Susmita Sahoo, Madhumanti Datta, Rajib Kar
Abstract:
The resistive-inductive-capacitive behavior of long interconnects which are driven by CMOS gates are presented in this paper. The analysis is based on the ¤Ç-model of a RLC load and is developed for submicron devices. Accurate and analytical expressions for the output load voltage, the propagation delay and the short circuit power dissipation have been proposed after solving a system of differential equations which accurately describe the behavior of the circuit. The effect of coupling capacitance between input and output and the short circuit current on these performance parameters are also incorporated in the proposed model. The estimated proposed delay and short circuit power dissipation are in very good agreement with the SPICE simulation with average relative error less than 6%.Keywords: Delay, Inverter, Short Circuit Power, ¤Ç-Model, RLCInterconnect, VLSI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16922311 Robust BIBO Stabilization Analysis for Discrete-time Uncertain System
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
The discrete-time uncertain system with time delay is investigated for bounded input bounded output (BIBO). By constructing an augmented Lyapunov function, three different sufficient conditions are established for BIBO stabilization. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Two numerical examples are provided to demonstrate the effectiveness of the derived results.
Keywords: Robust BIBO stabilization, delay-dependent stabilization, discrete-time system, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590