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Abstract—Edgeworth approximation is one of the most
important statistical methods that has a considered contribution in the
reduction of the sum of standard deviation of the independent
variables’ coefficients in a Quantile Regression Model. This model
estimates the conditional median or other quantiles. In this paper, we
have applied approximating statistical methods in an economical
problem. We have created and generated a quantile regression model
to see how the profit gained is connected with the realized sales of
the cosmetic products in a real data, taken from a local business. The
Linear Regression of the generated profit and the realized sales was
not free of autocorrelation and heteroscedasticity, so this is the reason
that we have used this model instead of Linear Regression. Our aim
is to analyze in more details the relation between the variables taken
into study: the profit and the finalized sales and how to minimize the
standard errors of the independent variable involved in this study, the
level of realized sales. The statistical methods that we have applied in
our work are Edgeworth Approximation for Independent and
Identical distributed (IID) cases, Bootstrap version of the Model and
the Edgeworth approximation for Bootstrap Quantile Regression
Model. The graphics and the results that we have presented here
identify the best approximating model of our study.

Keywords—Bootstrap, Edgeworth approximation, independent
and Identical distributed, quantile.

1. INTRODUCTION

HE econometrics is related to the application of some

statistical methods in the solution of an economical
problem. The difference between the econometrist’s and
statistician’s points of view has to do with the stochastic
relation that is essentially considered by the econometrist. So,
this stochastic relation is treating the errors done during the
creation of relations between the variables that are taken for
study. Every researcher’s aim is to build a model that has a
minimum level of the error, and one of the best methods that
helps in this objective’s arrival is the Edgeworth
Approximation. The Edgeworth expansions for the bootstrap
version is applied in a Quantile Regression model between the
generated profits during and the realized sales for the cosmetic
products during the past two years, through the EViewsl10
software package. The bootstrapping technique for the
reduction of standard error is the method that is used to evade
the severe estimation. Some kinds of bootstrap methods are
given in [6], [15] and [8]. Even though the realized sales have
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a considered statistical importance in the generated profits, the
focus of our work was the identification of the standard errors
of the independent variable (the realized sales) and finding the
best method of improving it and increasing the rightness of the
relation’s prediction. In this paper, we have done applications
for the Bootstrap version, Edgeworth Approximation for I1ID
cases and the Edgeworth approximation for Bootstrap
Quantile Regression Model. We have concretized them with
graphics and so, we can easily identify the best approximating
model of this study. At the same time, we will give a better
evidence of a comparison of the results for the two past years.

II. DEFINITION OF THE MEAN SQUARED ERROR ESTIMATE

Let X:{Xl,...,Xn}denote a random sample of size n

drawn from a distribution with distribution function F, and
write

lf(x)=n*zn“|(xi < X)

i=1

for the empirical distribution function of the sample, [10]. The
bootstrap estimate of the pth quantile of F, &, = lf’l(p) , 18

&, =F'(p)=inf{x:F(02 p| =X, M

where X, <..< X denote the order statistics of X and

r=[np] is the largest integer not greater than np. The mean

squared error of & o is given by

2 =E{( -5}

= #('n_r), [T (=& Foo ™ {1-Fo}"" dF(x)

_ N et - 2 n-r
_r(r]IO{F W-F (P} u™'d-w""du,
of which the bootstrap estimate is

2= r(:jfol{lf‘(u)— If"(p)}z u'1-u)""du

(2)
= Z(an - an)zsz
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where

u™' d-uw)" " du.

Nny\eim
W. =T J.
i r Jda-nm

The bootstrap variance estimate differs in details, as
follows. Bootstrap estimates of the mean and mean square of

&, are respectively

r[:JL} Fuu™(1-uw)"" du= zn: X W,
( jj F'(u)u ”(1—u)”*fdu:_§n:x§jwj.

Therefore, the bootstrap variance estimate is
L 2 L 2
PRFUEIRANE
j=1 j=1

III. EDGEWORTH EXPANSION FOR THE STUDENTIZED
BOOTSTRAP QUANTILE ESTIMATE

The bootstrap versions of &, and r?, defined in (1) and (2)

are fp and 7°. The Standard Normal distribution

characterized the limit of (ép -&,)/ 7, because ép is Normal

distributed (asymptotically) N(0,z%) [4], and 7°/7° =1
converges to 1, in probability. The Edgeworth expansion that
we will see now for the degree of convergence to this limit
and the properties of terms in this expansion are not similar
with those mentioned in Chapter 2 of [10]. The reason is that
2 _1is n", not N . The order of the first

term in the expansion is of size n”"*, but the polynomial of

that term is not even or odd; in the cases that we have seen
-1/2

the order of 77

before, the polynomial for the term of order n

usually even.
We define

term was

-1/2

qx)=Hzpd-p)}  x(x*+1+2%%)

1/2

+H{pA=p)f (14 p)C -1
[{pa-p} " p+{pa-p} " FETE) ]
~{p(-p)} " {11~ p)+r—np}

to see the result in a clear way. Furthermore

P {(5‘p —&)/E< x} = D(X)+n""2q()P(X) +O(n ")
as N— o ; see [11]. The degree of the polynomial q is 3 and it
is not even or odd function.

The Edgeworth expansion of a Studentized quantile is
created from a “basic” series of terms diminishing in orders of
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n~?, emanating from the numerator in the Studentized ratio,
together with a “new” series emanating from the denominator.
The order of the “new” series diminishes in n™"* because the

relative error of the variance estimate is n™"'* . The first term
in the “new” series flees. The jth term is even or odd
according to whether j is odd or even, respectively, for the
both series. In the joining series, the term of degree n™'’
includes the first, even term of the “basic” series and the
second, odd term of the “new” series.

The Edgeworth expansion for the distribution of a
Studentized quantile when the estimation of the standard
deviation is based clarity on a density estimator, see [12], [9],

[2].

IV. THE MODEL

The methods of modeling the conditional distribution in
other aspects represent special interest, except the regression
models that analyze the conditional mean of a dependent
variable. Quantile regression that models the quantiles of the
dependent variable for a set of conditioning variables, is one
of the most interesting models [16], [17].

Quantile regression estimates the linear relationship
between regressors X and Y, a specified quantile of the
dependent variable, see [13]. The least absolute deviations
(LAD) estimator is a particular case of quantile regression
which adjusts the conditional median of the dependent
variable.

The description of the fact that how the median or the
percentiles of the response variable are affected by regressors
variable is offered by the quantile regression [16], [17].

Independent and Identical

Koenker and Bassett [13] derive asymptotic normality
results for the quantile regression estimator in the i.i.d. setting,
showing that under mild regularity conditions,

Vn(B(@) - () ~ N(0,7(1-1)5(z)* 3 ) A3)

where
(X'X/n)

n—o

J =lim,_,, QX X;/n)=1lim
s(r)=F"'(z)=1/f(F'(z))

and s(r) is the derivative of the quantile function or the

inverse density function evaluated at the 7 -quantile and it is
called the sparsity function or the quantile density function,
(1], [16], [17].

The direct estimation of the coefficient covariance matrix is
forthright, for the value of the sparsity at a given quantile. The
formula for the asymptotic covariance in (3) is similar with the
covariance of ordinary least squares in the i.i.d. case, with
7(1-7)s(r)* that express the error variance in the ordinary
formula. The Edgeworth approximation is expressed with the

ordinary i.i.d. case and it helps to minify the standard error of
the independent coefficient.
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Sparsity Estimation

The expression for the asymptotic covariance matrix of the
quantile regression estimates for i.i.d. data shows the
importance of the sparsity function. Since, the sparsity is a
function of the unknown distribution F, it is necessary the
estimation of a concern quantity [16], [17].

The three methods that EViews ensures, for estimating the
scalar sparsity S(z)are: two Siddiqui [9] difference quotient

methods [14]; Bassett and [3] and one kernel density estimator
[SI-[7].

Bootstrapping

Bootstrapping technique for the estimation of the
covariance matrix is a method that avoids the estimation of the
asymptotic covariance matrix that requires the estimation of
the sparsity concern parameter, at a single point or
conditionally for each sampling.

Four different bootstrap methods that EViews provides are:
the residual bootstrap (Residual), the design, or XY -pair,
bootstrap (XY-pair), and two variants of the Markov Chain
Marginal Bootstrap (MCMB and MBMB-A).

Details for different bootstrap methods are given in [6], [8],
[15]-[17].

Residual Bootstrap

By resampling (with replacement) separately from the
residuals u,(z) and from the X,;, we can create the residual
bootstrap.

Let X be a mxp matrix of independently resampled X, and
let u” be an m-vector of resampled residual. We create the
dependent data and then we create a bootstrap estimate of
B(r) using Y* and X", from Y = X"B(r)+u’, [16], [17].
Repeating this procedure for M bootstrap replications, then the
estimator of the asymptotic covariance matrix is of the form:

V(B = n(%]éz(ﬁj ()~ BB, (7) - BD)' 4)

where, the mean of the bootstrap elements is £(7) . V( ,B) that
is the bootstrap covariance matrix, is a (scaled) estimate of the
sample variance of the bootstrap estimates of S(r) .

The independence of the u and the X is required for the
validity of using separate draws from X, and U,(7) .

XY-Pair (Design) Bootstrap

The usual appearance of bootstrap resampling is the XY-
pair bootstrap, and it is useful when u and X are not
independent. For the usage of the XY-pair bootstrap, we
simply create B randomly drawn (with replacement)
subsamples of size m from the original data, then compute
estimates of A(r) using the (y',X") for each subsample.

Using (4), from sample variance of the bootstrap results, can
be estimated the asymptotic covariance matrix, see [16], [17].
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Quantile Process Testing

A very interesting issue may be the analysis of the quantile
regression model not only for a single quantile, 7. We may
require creating joint hypotheses using coefficients for more
than one quantile. The general category of quantile process
analysis treats the consideration and the importance of more
than one quantile regression at the same time [16], [17].

We must first contour the appropriated distributional theory,
before operating to the hypothesis tests of interest. The
process coefficient vector is defined:

B=(B#),B(7)'s . (7))

Then
Jn(B-p)~ N(©0,Q)

where Q has blocks of the form:
Q; =[min(z,.z) -7, [H'@)IH ') (5
In the i.i.d. setting, QQ simplifies to,
Q=0,®1J (6)
where Q, has representative element:

min(z;,7;) —7,7;

a)li: -1 -1
fF(F- @ (F (7))

(7

By using (5)-(7) or implementing one of the bootstrap
methods, we can estimate € .

V.APPLICATIONS OF THE METHODS IN THE PROFIT TREND OF
COSMETICS PRODUCTS

We have considered 130 observations of the sales of
different cosmetics products and the generated profits for 2019
and 2020 from a local business in our country. These
observations are used to make the necessary generations
through EViews10 package, for identifying the profit trend of
cosmetics products.

The reason why we had not applied the statistical methods
of the Linear Regression model, is because the relation
between the variables taken in study is not linear, and is not
free of heteroskedasticity and autocorrelation, because the
particular probability of the Observations*Squared is 0.0000 <
0.05. In this way the null hypothesis that verifies the
inexistence of the autocorrelation and heteroscedasticity
cannot be accepted. So, the fact that the Chi-Square
probabilities in the tests of autocorrelations and
heteroskedasticity for the both years are 0.0000, lower than
5%, means that the two models are not free of
heteroskedasticity and autocorrelations.
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gJ Series: Residuals
1 ] Sarrple 1130
704 Cbservations 130
1 Mean 6.5%-12
50 4 Median -13361.45
1 Maxmum 3553609
. Minimum -270303.3
30 Std. Dev. 62898.02
o - Skewness 2712150
Kurtosis 19.40820
10
0 ; ; I_r | s ; Jarque-Bera  1617.699
-200000  -100000 0 100000 200000 300000 Probability  0.000000

Fig. 1 The Normality Test for the Linear Regression Model of 2019
year’s data

1
- Series: Resiouas
Sample 1130
804 Qbsenations 130
Mean 34512
804 Median -0007 368
Maimum ZX2BT43
Minimum -186579.8
404 Std. Dev. 42048 84
Skewness 2524746
Kurtosis 1865345
204
Jarque-Bera 1465350
—I_‘_‘ Probabiity  0.000000
0 T T L v T T
-200000 -100000 0 100000 200000

Fig. 2 The Normality Test for the Linear Regression Model of 2020
year’s data

Breusch-Godfrey Serial Correlation LM Test (2019)

F-statistic 11.02827 Prob. F(2,126) 0.0000
Obs*R-squared 19.36659 Prob. Chi-Square{2) 0.0001
Test Equation:
Dependent Variable RESID
Method: Least Squares
Date: 02/10/21 Time: 14:59
Sample: 1130
Included observations: 130
Presample missing value lagged residuals set to zero.
Variable Coefficient  Std. Error t+Statistic Prob.
Cc 1438918 5599924 0.256953 07976
SALES UNIT2020 -6.320355 9617993 -0.657139 05123
RESID(-1) 0415617 0089324 4652913 0.0000
RESID{-2) -0.099451 0.088556 -1.123037 02636
R-squared 0.148974 Mean dependent var 6.59E-12
Adjusted R-squared 0128711 5D. dependent var 6289802
S.E of regression 58710.8 Akaike info criterion 24.82892
Sum squared resid 4 34E+11 Schwarz criterion 2491715
Log likelihood -1609.88 Hannan-Quinn criter. 24 86477
F-statistic 7.35218 Durbin-Watson stat 1.970731
Prob(F-statistic) 0.00014

Fig. 3 The Serial Correlation test for the Linear Regression Model of
2019 year’s data

In the first model of 2019, when the median value of the
sold units has an increase of 1%, the profits will increase with
143.14%. So, it is easy to identify that the relation between
these two variables is strong. The statistical importance of the
sold units in the generated profits is considerable, because the
probability is 0.0000 < 0.05. This strong relation between
these variables is identified even in the model of 2020, but
these we have a different tendency. So, when the median value
of the sold units of cosmetics products has an increase of 1%,
the generated profits will increase with 141%. This changed
tendency is because of the pandemic situations that affected
the demand of girl for cosmetics products. So, we have a
decrease in the purchases of cosmetics products, because at
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least some of these products are useless, because of wearing
masks during the day. However, the sold units have a
statistical importance on the generated profits.

Breusch-Godfrey Serial Comrelation LM Test (2020)

F-statistic §.597132 Prob. F(2.126) 0.0003
Obs*R-squared 1560994 Prob. Chi-Square(2) 0.0004
Test Equation:
Dependent Variable RESID
Method: Least Squares
Date: 02/10/21 Time: 15:01
Sample: 1130
Included observations: 130
Presample missing value lagged residuals set to zero.
Variable Coefficient  Std. Error t-Statistic Prob.
Cc 729.0175  3757.082 0.194038 0.8465
SALES_UNIT2020 -4.596872  8.537285 0538447  0.5912
RESID(-1) 0364978  0.089529 4076639 0.0001
RESID(-2) -0.058543 0088891 -0.658592 0.5114
R-squared 0.120076 Mean de pendent var 345E12
Adjusted R-squared ~ 0.099126 S.D. dependentvar 42048.84
SE. of regression 399104 Akaike info criterion 24 05695
Sumsquaredresid  2.01E+11 Schwarz criterion 24 14518
Log likelihood -1559.702 Hannan-Quinn criter. 2409280
F-statistic 5731422 Durbin-Watson stat 1.975683
Prob(F-statistic) 0.001041

Fig. 4 The Serial Correlation test for the Linear Regression Model of

2020 year’s data

Hetero skedasticity Te st: Breusch-Pagan-Godfrey (2019)
F-statistic 256.22631 Prob. F(1,128) 0.0000
Obs"R-squared 2140246 Prob. Chi-Square(1) 0.0000
Scaled explained S5 190.9758 Prob. Chi-Square(1) 0.0000
Test Equation:
Dependent Variable: RESID*2
Method: Least Squares
Date: 02/10/21 Time: 15:00
Sample: 1 130
Included observations: 130

Variable Coefficient Std.Error  +Statistic Prob.

c 1.03E+09  1.48E+09 0.699362 04856

SALES UNIT2020 12636064 2515851 5.02258 0.0000
R-squared 0164634 Mean dependent var 3.93E+09
Adjusted R-squared  0.158108 SD. dependent var 1.69E+10
S.E of regression 1.55E+10 Akaike info criterion 4978319
Sum squared resid ~ 3.08E+22 Schwarz criterion 49.82731
Log likelihood -3233.908 Hannan-Quinn criter.  49.80112
F-statistic 2522631 Durbin-Watson stat 1.50046
Prob(F-statistic) 0.000002

Fig. 5 The heteroscedasticity test for the Linear Regression Model for

2019 year’s data

Heteroskedasticity Test: Breusch-Pagan-Godfrey (2020)
F-statistic 2491218 Prob. F(1,128) 0.0000
Obs*R-squared 2117937 Prob. Chi-Square(1) 0.0000
Scaled explained SS  181.2366 Prob. Chi-Square(1) 0.0000
Test Equation:
Dependent Variable RESIDA2
Method: Least Squares
Date: 02/10/21 Time: 15:01
Sample: 1130
Included observations: 130

Variable Coefficient  Std. Emror t-Statistic Prob.

Cc 6.04E+08 6.39E+08 0.944908 0.3465

SALES UNIT2020 7194458 1441426 4.99121 0.0000
R-squared 0.162918 Mean dependent var 1.75E+09
Adjusted R-squared  0.156379 S.D. dependent var T.40E+09
S.E of regression 6.80E+09 Akaike info criterion 48.13265
Sum squared resid  5.91E+21 Schwarz criterion 48.17676
Log likelihood -3126.62 Hannan-Quinn criter. 4815057
F-statistic 2491218 Durbin-Watson stat 1657908
Prob(F-statistic) 0.000002

Fig. 6 The heteroscedasticity test for the Linear Regression Model for
2020 year’s data
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Dependent Variable: PROFIT2019

Method: Quantile Regression (Median)

Date: 02/09/21 Time: 21:01

Sample: 1130

Included observations: 130

Huber Sandwich Standard Errors & Covariance

Sparsity method: Kemel (Epanechnikov) using residuals
Bandwidth method: Hall-Sheather, bw=0.19179
Estimation successiully identifies unique optimal solution

Variable Coefficient  Std. Error  t-Statistic Prob
c 12909.71 1769.685 7.204921 0.0000
SALES_UNIT_2019 143.1429 6.387266 2241067 0.0000
Pseudo R-squared 0.390078 Mean dependent var 55550.89
Adjusted R-squared 0.385313 S5.D. dependent var 91839.30
S E. of regression 6483538 Objective 1768740
‘Quantile dependent
var 2207000 Restr. Objective 2800043
Sparsity 4050930 Quasi-LR statistic 2233963
Prob(Quasi-LR stat) 0.000000

Fig. 7 The Quantile Regression Model of the 2019 year’s data

Dependent Variable: PROFIT_2020

Method: Quantile Regression (Median)

Date: 02/09/21 Time: 21:14

Sample: 1 130

Included observations: 130

Huber Sandwich Standard Errors & Covariance

Sparsity method: Kemel (Epanechnikov) using residuals
Bandwidth method: Hall-Sheather, bw=0.19179
Estimation successfully identifies unique optimal solution

Variable Coefficient  Std. Error t-Statistic Prob
(o] 7075.527 1074773 6583273 0.0000
SALES_UNIT2020 141.0085  9.263846 15.22138 0.0000
Pseudo R-squared 0.406264 Mean dependent var 36395.49
Adjusted R-squared 0.401625 S.D. dependent var 63516.50
S.E. of regression 4414796 Objective 1179896
Quantile dependent
var 1204410 Restr. objective 1087239,
Spars 2447546 Quasi-LR statistic 263.8865
Prob(Quasi-LR stat) 0.000000

Fig. 8 The Quantile Regression Model of the 2020 year’s data

The adjusted R square expresses the percentage of the
generated profits variance from the sold units of cosmetics
products, So, the both models have approximately the same
percentage, 38.5% for 2019 and 40.2% for 2020. The 61.5%
of the variance of the generated profits for 2019 is explainable
by other variables that are not considered in this model. The
same logic is followed for 2020 too, related to the adjusted R-
square. The particular median variances for 2019 and 2020 are
high, because of the R-square results and followed logic. So,
the relation is strong, but not optimal, because there are other
influences or variables that together can describe in a most
appropriate way the model.

In Fig. 9 is presented the graphics of the distribution of the
standard error of the coefficient of the independent variable
that is the units of cosmetics products that are sold, for every
one of the 10 selected quantiles, for the quantiles’ test process.

From Figs. 7 and Fig. 8, it is evident that the standard error
of the 2020 model is higher than the 2019 one. That is why the
distribution of standard errors of the sold units in 2020 have
higher values for the first to the 10-th quantile, compared with
2019.

In Figs. 10 and 11 are presented the results of the Quantile
Regression Model after applying the Ordinary IID method that
is related to Edgeworth Approximation. The results are
sensitively improved, because of the standard errors’
minimization for the both years.
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The Quantile Regression Model

Fig. 9 The graphic of the standard errors’ distribution for the Quantile
Regression Model of the 2019 and 2020 years

Dependent Variable: PROFAT2019

Method: Quantile Regression (Median)

Date: 02/09/21 Time: 21:03

Sample: 1 130

Included observations: 130

Ordinary (11D) Standard Errors & Covarance

Sparsity method: Kemel (Epanec hnikov) using residuals
Bandwidth method: Hall-Sheather, bw=0.19179
Estimation successfully identifies unique optimal solution

Variable Coefficient Std. Error t-Statistic Prob.
C 12009.71 1950852  6.617473 0.0000
SALES_UNIT_2019 143.1429 3.321782 43.09220 0.0000
Pseudo R-squared 0.390078 Mean dependent var 55550.89
Adjusted R-squared 0.385313 S.D. dependent var 91839.30
S.E. of regression 64835.38 Objective 1768740
Quantile dependent
var 22070.00 Restr. Objective 2899943
Sparsity 40068.23 Quasi-LR statistic 220.8938
Prob(Quasi-LR stat) 0.000000

Fig. 10 The application of Edgeworth approximation for IID cases in
2019 data

Dependent Variable: PROFIT_2020

Method: Quantile Regression (Median)

Date: 02/09/21 Time: 21:18

Sample: 1 130

Included observations: 130

Ordinary (1ID) Standard Errors & Covariance

Sparsity method: Siddiqui using residuals

Bandwidth method: Hall-Sheather, bw=0.19179
Estimation successfully identifies unique optimal solution

Vanable Coefficient  Std. Error t-Statistic Prob
c 7075.527 1042195  6.789060 0.0000
SALES_UNIT2020 141.0085 2.350360  59.99445 0.0000
Pseudo R-squared 0.406264 Mean dependent var 36395.49
Adjusted R-squared 0.401625 S.D. dependent var 63516.50
SE. of regression 4414798 Objective 1179896
Quantile dependent
var 12044.10 Restr. objective 1987239
Sparsity 22166.23 Quasi-LR statistic 291.3776
Prob(Quasi-LR stat) 0.000000

Fig. 11 The application of Edgeworth approximation for IID cases in
2020 data

In Fig. 12 are graphically presented the results of the model
after applying the Edgeworth approximation. In this case it is
easy to identify the positive results of reducing the standard
errors of the sold units’ coefficient in the two years.

In Figs. 13 and 14 is presented the Bootstrap Version for the
Quantile Regression Model for 2019 and 2020. The method
used is Bootstrap Residual, for 10,000 replications. Even in
this case the standard error for the independent variable taken
is minimized and the curve of standard errors is decreased
compared with the curve of the 2019 and 2020 quantile
regression model.
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Edgeworth approximation applied on S.Errors
for 2019-2020

Bootstrap Quantile Regression
Model (2019-2020)

Fig. 12 The graphic of the standard errors’ distribution after the
application of the Edgeworth for IID Cases for 2019 and 2020 years

Dependent Variable: PRORT2019

Method: Quantile Regression (Median)

Date: 02/09/21 Time: 21:05

Sample: 1 130

Included observations: 130

Bootstrap Standard Emors & Covanance

Bootstrap method. Residual, reps=10000, rng=kn, seed=633957423
Sparsity method: Siddiqui using residuals

Bandwidth method: Hall-Sheather, bw=0.19179

Initial Values: C(1)=0.00000, C(2)=0.00000

Estimation successfully identifies unique optimal solution

Variable Coefficient ~ Std. Eror  t-Statistic Prob
Cc 12909.71 1619.185 7.972970 0.0000
SALES UNIT_2019 143.1429 3.320511 4299217 0.0000
Pseudo R-squared 0.390078 Mean dependent var 565650.89
Adjusted R-squared 0.385313 5.D. dependent var 91839.30
S.E. of regression 64835.38 Objective 1768740.
Quantile dependent
var 22070.00 Restr. Objective 2899943,
Sparsity 34566.92 Quasi-LR statistic 261.6337
Prob{Quasi-LR stat) 0.000000

Fig. 13 The application of Edgeworth approximation of Bootstrap
Residual in 2019 data

Dependent Variable: PROFIT_2020

Method: Quantile Regression (Median)

Date: 02/09/21 Time: 21:36

Sample: 1 130

Included observations: 130

Bootstrap Standard Errors & Covariance

Bootstrap method: Residual, reps=10000, mg=kn, seed=911414654
Sparsity method: Kernel (Epanechnikov) using residuals
Bandwidth method: Hall-Sheather, bw=0.19179

Initial Values: C(1)=0.00000, C(2)=0.00000

Estimation successtully identifies unique optimal solution

Variable Coefficient  Std. Error  t-Statistic Prob
C 7075.527 1054 578 6.709348 0.0000
SALES_UNIT2020 141.0085 2914924 4837469  0.0000
Pseudo R-squared 0406264 Mean dependent var 36395.49
Adjusted R-squared 0401625 $S.D. dependent var 63516.50
S.E. of regression 4414796 Objective 1179896
Quantile dependent
var 1204410 Restr. objective 1987239.
Sparsity 24498.41 Quasi-LR statistic 263.6393
Prob{Quasi-LR stat) 0.000000

Fig. 14 The application of Edgeworth approximation of Bootstrap
Residual in 2020 data

Figs. 16 and 17 present the generated results for the 2019
and 2020 after the application of Edgeworth Approximation in
the Bootstrap version of the Quantile Regression Model. The
results are more improved, because of the sensitively
reduction of the standard errors of the sold units’ coefficient.
So, we can conclude that the Edgeworth Approximation in the
Bootstrap Quantile Regression Model is the optimal solution
of the model’s estimation.
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Fig.15 The graphic of the standard errors’ distribution after the
application of the Bootstrap Residual for 2019 and 2020

Dependent Variable: PROFIT2019

Method: Quantile Regression (Median)

Date: 02/09/21 Time:21:06

Sample: 1130

Included observations: 130

Ordinary (D) Standard Errors & Covariance

Sparsity method: Siddiqui using residuals

Bandwidth method: Hall-Sheather, bw=0.19179

Initial Values: C(1)=0.00000, C(2)=0.00000

Estimation successfully identifies unique optimal solution

Variable Coefficient Std. Error t-Statistic Prob.
C 12909.71 1647.078 7837947 0.0000
SALES_UNIT_2019 1431429 2.804536 51.03979 0.0000
Pseudo R-squared 0390078 Mean dependent var 55550.89
Adjusted R-squared 0385313 S.D. dependentvar 91839.30
S.E. of regression 6483538 Objective 1768740.
Quantile dependent
var 22070.00 Restr. Objective 2899943,
Sparsity 34588.92 AQuasi-LR statistic 2616337
Prob(Quasi-LR stat) 0.000000

Fig. 16 The application of Edgeworth approximation for Bootstrap
Quantile Regression Model in 2019 year’s data

Dependent V ariable: PROFIT_2020

Method: Quantile Regression (Median)

Date: 020921 Time: 21:34

Sample: 1 130

Included observations: 130

Ordinary (1ID) Standard Errors & Covariance

Sparsity method: Siddiqui using residuals

Bandwidth method: Hall-Sheather, bw=0.19179

Initial Values: C{1)=0.00000, C(2)=0.00000

Estimation successfully identifies unique optimal solution

Variable Coefficient Std. Error t-Statistic Prob.
Cc 7075.527 1042.195 6.789060 0.0000
SALES_UNIT2020 141.0088 2350360 59.99445 0.0000
Pseudo R-squared 0.406264 Mean dependentvar 36395.49
Adjusted R-zquared 0401625 S.D. dependentvar 63516.50
S.E. of regression 44147 96 Objective 1179896
Quantile dependent
var 1204410 Restr. objective 1987234,
Sparsity 22166.23 Quasi-LR statistic 291.3776
Prob{Quasi-LR stat) 0.000000

Fig. 17 The application of Edgeworth approximation for Bootstrap
Quantile Regression Model in 2020 year’s data

The optimal results of the Edgeworth Approximation for
Bootstrap Quantile Regression Model for 2019 and 2020 are
shown in Fig. 18, and the tendency is the approximation of the
standard errors’ distribution with zero.

Based on all generated results, in Fig. 19 is created a
summary form of all the graphics for the both years, and the
conclusion is the same, that the Bootstrap Edgeworth
Approximation is the best solution.

577 1SNI:0000000091950263



Open Science Index, Economics and Management Engineering Vol:15, No:5, 2021 publications.waset.org/10012050.pdf

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering
Vol:15, No:5, 2021
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Fig. 18 The graphic of the standard errors’ distribution after the
application of Edgeworth Approximation for Bootstrap Quantile
Regression Model for 2019 and 2020
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Fig. 19 The summary graph

VI. CONCLUSION

In this paper, we have treated an economical problem using
mathematical tools, like Edgeworth Approximation for
independent and identical distributed cases, Bootstrap,
Edgeworth Approximation for Bootstrap version. We have
applied these methods in our model and with the help of
EViews10 software, we have done the necessary simulations.
At the end, we conclude that the best approximation method in
our study is the Bootstrap Edgeworth Approximation.
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