
 

 

 
Abstract—Edgeworth approximation is one of the most 

important statistical methods that has a considered contribution in the 
reduction of the sum of standard deviation of the independent 
variables’ coefficients in a Quantile Regression Model. This model 
estimates the conditional median or other quantiles. In this paper, we 
have applied approximating statistical methods in an economical 
problem. We have created and generated a quantile regression model 
to see how the profit gained is connected with the realized sales of 
the cosmetic products in a real data, taken from a local business. The 
Linear Regression of the generated profit and the realized sales was 
not free of autocorrelation and heteroscedasticity, so this is the reason 
that we have used this model instead of Linear Regression. Our aim 
is to analyze in more details the relation between the variables taken 
into study: the profit and the finalized sales and how to minimize the 
standard errors of the independent variable involved in this study, the 
level of realized sales. The statistical methods that we have applied in 
our work are Edgeworth Approximation for Independent and 
Identical distributed (IID) cases, Bootstrap version of the Model and 
the Edgeworth approximation for Bootstrap Quantile Regression 
Model. The graphics and the results that we have presented here 
identify the best approximating model of our study.  

 
Keywords—Bootstrap, Edgeworth approximation, independent 

and Identical distributed, quantile. 

I. INTRODUCTION 
HE econometrics is related to the application of some 
statistical methods in the solution of an economical 

problem. The difference between the econometrist’s and 
statistician’s points of view has to do with the stochastic 
relation that is essentially considered by the econometrist. So, 
this stochastic relation is treating the errors done during the 
creation of relations between the variables that are taken for 
study. Every researcher’s aim is to build a model that has a 
minimum level of the error, and one of the best methods that 
helps in this objective’s arrival is the Edgeworth 
Approximation. The Edgeworth expansions for the bootstrap 
version is applied in a Quantile Regression model between the 
generated profits during and the realized sales for the cosmetic 
products during the past two years, through the EViews10 
software package. The bootstrapping technique for the 
reduction of standard error is the method that is used to evade 
the severe estimation. Some kinds of bootstrap methods are 
given in [6], [15] and [8]. Even though the realized sales have 
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a considered statistical importance in the generated profits, the 
focus of our work was the identification of the standard errors 
of the independent variable (the realized sales) and finding the 
best method of improving it and increasing the rightness of the 
relation’s prediction. In this paper, we have done applications 
for the Bootstrap version, Edgeworth Approximation for IID 
cases and the Edgeworth approximation for Bootstrap 
Quantile Regression Model. We have concretized them with 
graphics and so, we can easily identify the best approximating 
model of this study. At the same time, we will give a better 
evidence of a comparison of the results for the two past years. 

II. DEFINITION OF THE MEAN SQUARED ERROR ESTIMATE 

Let 1,..., nX X denote a random sample of size n 
drawn from a distribution with distribution function F, and 
write 
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for the empirical distribution function of the sample, [10]. The 
bootstrap estimate of the pth quantile of F, 1ˆ ( )p F p , is 

 
1ˆ ˆ ˆ( ) inf : ( )p nrF p x F x p X                 (1) 

 
where 1 ...n nnX X  denote the order statistics of X and 
r np  is the largest integer not greater than np. The mean 

squared error of p  is given by 
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of which the bootstrap estimate is 
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The bootstrap variance estimate differs in details, as 
follows. Bootstrap estimates of the mean and mean square of 
ˆ

p  are respectively 

1 1 1
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Therefore, the bootstrap variance estimate is 

2 2

1 1
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n n

nj j nj j
j j

X w X w  

III. EDGEWORTH EXPANSION FOR THE STUDENTIZED 
BOOTSTRAP QUANTILE ESTIMATE

The bootstrap versions of p  and 2 , defined in (1) and (2) 

are ˆ
p  and 2ˆ . The Standard Normal distribution 

characterized the limit of ˆ ˆ( ) /p p , because ˆ
p  is Normal 

distributed (asymptotically) 2(0, )N  [4], and 2 2ˆ / 1  
converges to 1, in probability. The Edgeworth expansion that 
we will see now for the degree of convergence to this limit 
and the properties of terms in this expansion are not similar 
with those mentioned in Chapter 2 of [10]. The reason is that 
the order of 2 2ˆ 1  is 1/ 4n , not 1/ 2n . The order of the first 
term in the expansion is of size 1/ 2n , but the polynomial of 
that term is not even or odd; in the cases that we have seen 
before, the polynomial for the term of order 1/ 2n  term was 
usually even. 

We define  

1/2 2 3/21
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to see the result in a clear way. Furthermore  

1/2 3/4ˆ ˆ( ) / ( ) ( ) ( ) ( )p pP x x n q x x O n  

 
as n ; see [11]. The degree of the polynomial q is 3 and it 
is not even or odd function. 

The Edgeworth expansion of a Studentized quantile is 
created from a “basic” series of terms diminishing in orders of  

1/ 2n , emanating from the numerator in the Studentized ratio, 
together with a “new” series emanating from the denominator. 
The order of the “new” series diminishes in 1/ 4n because the 
relative error of the variance estimate is 1/ 4n . The first term 
in the “new” series flees. The jth term is even or odd 
according to whether j is odd or even, respectively, for the 
both series. In the joining series, the term of degree 1/ 2n  
includes the first, even term of the “basic” series and the 
second, odd term of the “new” series. 

The Edgeworth expansion for the distribution of a 
Studentized quantile when the estimation of the standard 
deviation is based clarity on a density estimator, see [12], [9], 
[2]. 

IV. THE MODEL 
The methods of modeling the conditional distribution in 

other aspects represent special interest, except the regression 
models that analyze the conditional mean of a dependent 
variable. Quantile regression that models the quantiles of the 
dependent variable for a set of conditioning variables, is one 
of the most interesting models [16], [17]. 

Quantile regression estimates the linear relationship 
between regressors X and Y, a specified quantile of the 
dependent variable, see [13]. The least absolute deviations 
(LAD) estimator is a particular case of quantile regression 
which adjusts the conditional median of the dependent 
variable. 

The description of the fact that how the median or the 
percentiles of the response variable are affected by regressors 
variable is offered by the quantile regression [16], [17]. 

Independent and Identical 
Koenker and Bassett [13] derive asymptotic normality 

results for the quantile regression estimator in the i.i.d. setting, 
showing that under mild regularity conditions, 

 
2 1ˆ( ( ) ( )) (0, (1 ) ( ) )n N s J( , ((0, (1(0 (1(0 (1(0 (1             (3) 

 
where 

1 1

lim ( '/ ) lim ( ' / )

( ) '( ) 1/ ( ( ))

n i i n
i

J X X n X X n

s F f F
 

 
and ( )s  is the derivative of the quantile function or the 
inverse density function evaluated at the -quantile and it is 
called the sparsity function or the quantile density function, 
[1], [16], [17].  

The direct estimation of the coefficient covariance matrix is 
forthright, for the value of the sparsity at a given quantile. The 
formula for the asymptotic covariance in (3) is similar with the 
covariance of ordinary least squares in the i.i.d. case, with 

2(1 ) ( )s  that express the error variance in the ordinary 
formula. The Edgeworth approximation is expressed with the 
ordinary i.i.d. case and it helps to minify the standard error of 
the independent coefficient. 
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Sparsity Estimation 
The expression for the asymptotic covariance matrix of the 

quantile regression estimates for i.i.d. data shows the 
importance of the sparsity function. Since, the sparsity is a 
function of the unknown distribution F, it is necessary the 
estimation of a concern quantity [16], [17]. 

The three methods that EViews ensures, for estimating the 
scalar sparsity ( )s are: two Siddiqui [9] difference quotient 
methods [14]; Bassett and [3] and one kernel density estimator 
[5]-[7]. 

Bootstrapping 
Bootstrapping technique for the estimation of the 

covariance matrix is a method that avoids the estimation of the 
asymptotic covariance matrix that requires the estimation of 
the sparsity concern parameter, at a single point or 
conditionally for each sampling. 

Four different bootstrap methods that EViews provides are: 
the residual bootstrap (Residual), the design, or XY-pair, 
bootstrap (XY-pair), and two variants of the Markov Chain 
Marginal Bootstrap (MCMB and MBMB-A). 

Details for different bootstrap methods are given in [6], [8], 
[15]-[17]. 

Residual Bootstrap
By resampling (with replacement) separately from the 

residuals ( )iu  and from the iX , we can create the residual 
bootstrap. 

Let *X  be a mxp matrix of independently resampled X, and 
let *u  be an m-vector of resampled residual. We create the 
dependent data and then we create a bootstrap estimate of 

( )  using *Y  and *X , from * * *ˆ( )Y X u , [16], [17]. 
Repeating this procedure for M bootstrap replications, then the 
estimator of the asymptotic covariance matrix is of the form: 

1

1ˆ ˆ ˆ( ) ( ( ) ( ))( ( ) ( )) '
B

j j
j

mV n
n B

           (4) 

 

where, the mean of the bootstrap elements is ( ) . ˆ( )V that 
is the bootstrap covariance matrix, is a (scaled) estimate of the 
sample variance of the bootstrap estimates of ( ) . 

The independence of the u and the X is required for the 
validity of using separate draws from iX  and ( )iu . 

XY-Pair (Design) Bootstrap 
The usual appearance of bootstrap resampling is the XY-

pair bootstrap, and it is useful when u and X are not 
independent. For the usage of the XY-pair bootstrap, we 
simply create B randomly drawn (with replacement) 
subsamples of size m from the original data, then compute 
estimates of ( )  using the * *( , )y X  for each subsample. 
Using (4), from sample variance of the bootstrap results, can 
be estimated the asymptotic covariance matrix, see [16], [17]. 

Quantile Process Testing 
A very interesting issue may be the analysis of the quantile 

regression model not only for a single quantile, . We may 
require creating joint hypotheses using coefficients for more 
than one quantile. The general category of quantile process 
analysis treats the consideration and the importance of more 
than one quantile regression at the same time [16], [17]. 

We must first contour the appropriated distributional theory, 
before operating to the hypothesis tests of interest. The 
process coefficient vector is defined: 

 

1 2( ( ) ', ( ) ',..., ( ) ') 'K  
 
Then 

ˆ( ) (0, )n N (0, )(0,  
 
where  has blocks of the form: 
 

 1 1min( , ) ( ) ( )ij i j i j i jH JH          (5) 
 
In the i.i.d. setting,  simplifies to, 
 

0 J                                 (6) 
 
where 0  has representative element: 

 1 1

min( , )
( ( ))( ( ( )))

i j i j
ij

i jf F f F
                   (7) 

 
By using (5)-(7) or implementing one of the bootstrap 

methods, we can estimate .  

V. APPLICATIONS OF THE METHODS IN THE PROFIT TREND OF 
COSMETICS PRODUCTS 

We have considered 130 observations of the sales of 
different cosmetics products and the generated profits for 2019 
and 2020 from a local business in our country. These 
observations are used to make the necessary generations 
through EViews10 package, for identifying the profit trend of 
cosmetics products.  

The reason why we had not applied the statistical methods 
of the Linear Regression model, is because the relation 
between the variables taken in study is not linear, and is not 
free of heteroskedasticity and autocorrelation, because the 
particular probability of the Observations*Squared is 0.0000 < 
0.05. In this way the null hypothesis that verifies the 
inexistence of the autocorrelation and heteroscedasticity 
cannot be accepted. So, the fact that the Chi-Square 
probabilities in the tests of autocorrelations and 
heteroskedasticity for the both years are 0.0000, lower than 
5%, means that the two models are not free of 
heteroskedasticity and autocorrelations.  
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Fig. 1 The Normality Test for the Linear Regression Model of 2019 
year’s data 

 

 

Fig. 2 The Normality Test for the Linear Regression Model of 2020 
year’s data 

 

 

Fig. 3 The Serial Correlation test for the Linear Regression Model of 
2019 year’s data 

 
In the first model of 2019, when the median value of the 

sold units has an increase of 1%, the profits will increase with 
143.14%. So, it is easy to identify that the relation between 
these two variables is strong. The statistical importance of the 
sold units in the generated profits is considerable, because the 
probability is 0.0000 < 0.05. This strong relation between 
these variables is identified even in the model of 2020, but 
these we have a different tendency. So, when the median value 
of the sold units of cosmetics products has an increase of 1%, 
the generated profits will increase with 141%. This changed 
tendency is because of the pandemic situations that affected 
the demand of girl for cosmetics products. So, we have a 
decrease in the purchases of cosmetics products, because at 

least some of these products are useless, because of wearing 
masks during the day. However, the sold units have a 
statistical importance on the generated profits.  

 

 

Fig. 4 The Serial Correlation test for the Linear Regression Model of 
2020 year’s data 

 

 

Fig. 5 The heteroscedasticity test for the Linear Regression Model for 
2019 year’s data 

 

 

Fig. 6 The heteroscedasticity test for the Linear Regression Model for 
2020 year’s data 
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Fig. 7 The Quantile Regression Model of the 2019 year’s data 
 

 

Fig. 8 The Quantile Regression Model of the 2020 year’s data 
 

The adjusted R square expresses the percentage of the 
generated profits variance from the sold units of cosmetics 
products, So, the both models have approximately the same 
percentage, 38.5% for 2019 and 40.2% for 2020. The 61.5% 
of the variance of the generated profits for 2019 is explainable 
by other variables that are not considered in this model. The 
same logic is followed for 2020 too, related to the adjusted R-
square. The particular median variances for 2019 and 2020 are 
high, because of the R-square results and followed logic. So, 
the relation is strong, but not optimal, because there are other 
influences or variables that together can describe in a most 
appropriate way the model.  

In Fig. 9 is presented the graphics of the distribution of the 
standard error of the coefficient of the independent variable 
that is the units of cosmetics products that are sold, for every 
one of the 10 selected quantiles, for the quantiles’ test process. 

From Figs. 7 and Fig. 8, it is evident that the standard error 
of the 2020 model is higher than the 2019 one. That is why the 
distribution of standard errors of the sold units in 2020 have 
higher values for the first to the 10-th quantile, compared with 
2019. 

In Figs. 10 and 11 are presented the results of the Quantile 
Regression Model after applying the Ordinary IID method that 
is related to Edgeworth Approximation. The results are 
sensitively improved, because of the standard errors’ 
minimization for the both years.

 

 

Fig. 9 The graphic of the standard errors’ distribution for the Quantile 
Regression Model of the 2019 and 2020 years 

 

 

Fig. 10 The application of Edgeworth approximation for IID cases in 
2019 data 

 

 

Fig. 11 The application of Edgeworth approximation for IID cases in 
2020 data 

 
In Fig. 12 are graphically presented the results of the model 

after applying the Edgeworth approximation. In this case it is 
easy to identify the positive results of reducing the standard 
errors of the sold units’ coefficient in the two years.  

In Figs. 13 and 14 is presented the Bootstrap Version for the 
Quantile Regression Model for 2019 and 2020. The method 
used is Bootstrap Residual, for 10,000 replications. Even in 
this case the standard error for the independent variable taken 
is minimized and the curve of standard errors is decreased 
compared with the curve of the 2019 and 2020 quantile 
regression model. 
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Fig. 12 The graphic of the standard errors’ distribution after the 
application of the Edgeworth for IID Cases for 2019 and 2020 years 

 

 

Fig. 13 The application of Edgeworth approximation of Bootstrap 
Residual in 2019 data 

 

 

Fig. 14 The application of Edgeworth approximation of Bootstrap 
Residual in 2020 data 

 
Figs. 16 and 17 present the generated results for the 2019 

and 2020 after the application of Edgeworth Approximation in 
the Bootstrap version of the Quantile Regression Model. The 
results are more improved, because of the sensitively 
reduction of the standard errors of the sold units’ coefficient. 
So, we can conclude that the Edgeworth Approximation in the 
Bootstrap Quantile Regression Model is the optimal solution 
of the model’s estimation. 

 

 

Fig.15 The graphic of the standard errors’ distribution after the 
application of the Bootstrap Residual for 2019 and 2020  

 

 

Fig. 16 The application of Edgeworth approximation for Bootstrap 
Quantile Regression Model in 2019 year’s data 

 

 

Fig. 17 The application of Edgeworth approximation for Bootstrap 
Quantile Regression Model in 2020 year’s data

 
The optimal results of the Edgeworth Approximation for 

Bootstrap Quantile Regression Model for 2019 and 2020 are 
shown in Fig. 18, and the tendency is the approximation of the 
standard errors’ distribution with zero.  

Based on all generated results, in Fig. 19 is created a 
summary form of all the graphics for the both years, and the 
conclusion is the same, that the Bootstrap Edgeworth 
Approximation is the best solution.

 

World Academy of Science, Engineering and Technology
International Journal of Economics and Management Engineering

 Vol:15, No:5, 2021 

577International Scholarly and Scientific Research & Innovation 15(5) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
co

no
m

ic
s 

an
d 

M
an

ag
em

en
t E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
5,

 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
05

0.
pd

f



 

 

 

Fig. 18 The graphic of the standard errors’ distribution after the 
application of Edgeworth Approximation for Bootstrap Quantile 

Regression Model for 2019 and 2020  
 

 

Fig. 19 The summary graph

VI. CONCLUSION 
In this paper, we have treated an economical problem using 

mathematical tools, like Edgeworth Approximation for 
independent and identical distributed cases, Bootstrap, 
Edgeworth Approximation for Bootstrap version. We have 
applied these methods in our model and with the help of 
EViews10 software, we have done the necessary simulations. 
At the end, we conclude that the best approximation method in 
our study is the Bootstrap Edgeworth Approximation. 
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