Search results for: loss function decomposition.
2451 The Study on the Stationarity of Energy Consumption in US States: Considering Structural Breaks, Nonlinearity, and Cross- Sectional Dependency
Authors: Wen-Chi Liu
Abstract:
This study applies the sequential panel selection method (SPSM) procedure proposed by Chortareas and Kapetanios (2009) to investigate the time-series properties of energy consumption in 50 US states from 1963 to 2009. SPSM involves the classification of the entire panel into a group of stationary series and a group of non-stationary series to identify how many and which series in the panel are stationary processes. Empirical results obtained through SPSM with the panel KSS unit root test developed by Ucar and Omay (2009) combined with a Fourier function indicate that energy consumption in all the 50 US states are stationary. The results of this study have important policy implications for the 50 US states.
Keywords: Energy Consumption, Panel Unit Root, Sequential Panel Selection Method, Fourier Function, US states.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18132450 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Element Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular polyhedral meshes have many advantages. One way to build such meshes consists in constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, i.e. elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: first, we present a gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.
Keywords: Anisotropic Voronoi Diagrams, Meshes for Numerical Simulations, Optimisation, Volumic Polyhedral Meshing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572449 A Voltage Based Maximum Power Point Tracker for Low Power and Low Cost Photovoltaic Applications
Authors: Jawad Ahmad, Hee-Jun Kim
Abstract:
This paper describes the design of a voltage based maximum power point tracker (MPPT) for photovoltaic (PV) applications. Of the various MPPT methods, the voltage based method is considered to be the simplest and cost effective. The major disadvantage of this method is that the PV array is disconnected from the load for the sampling of its open circuit voltage, which inevitably results in power loss. Another disadvantage, in case of rapid irradiance variation, is that if the duration between two successive samplings, called the sampling period, is too long there is a considerable loss. This is because the output voltage of the PV array follows the unchanged reference during one sampling period. Once a maximum power point (MPP) is tracked and a change in irradiation occurs between two successive samplings, then the new MPP is not tracked until the next sampling of the PV array voltage. This paper proposes an MPPT circuit in which the sampling interval of the PV array voltage, and the sampling period have been shortened. The sample and hold circuit has also been simplified. The proposed circuit does not utilize a microcontroller or a digital signal processor and is thus suitable for low cost and low power applications.
Keywords: Maximum power point tracker, Sample and hold amplifier, Sampling interval, Sampling period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27662448 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies
Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek
Abstract:
To ensure targeting of apoferritin nanocarrier with encapsulated doxorubicin drug, we used a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (APODOX) was coated either with gold nanoparticles (APODOX-Nano) or gold(III) chloride hydrate reduced with sodium borohydride (APODOX-HAu). The reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties and probably accompanied with the loss of its biological activity. Fluorescent properties of APODOX-Nano were similar to the unmodified APODOX; therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, ELISA-like method was used with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, the nanocarrier was applied. APODOX without the modification showed 5× lower affinity to the antigen than APODOX-Nano modified gold and targeting antibodies (human IgG antibodies).Keywords: Antibody targeting, apoferritin, doxorubicin, nanocarrier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22502447 Image Compression Using Hybrid Vector Quantization
Authors: S.Esakkirajan, T. Veerakumar, V. Senthil Murugan, P.Navaneethan
Abstract:
In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.Keywords: Lifting Scheme, Multistage Vector Quantization and Pyramid Vector Quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19372446 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.
Keywords: Design of experiments, regression analysis, SI Engine, statistical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12522445 Closed Form Solution to problem of Calcium Diffusion in Cylindrical Shaped Neuron Cell
Authors: Amrita Tripathi, Neeru Adlakha
Abstract:
Calcium [Ca2+] dynamics is studied as a potential form of neuron excitability that can control many irregular processes like metabolism, secretion etc. Ca2+ ion enters presynaptic terminal and increases the synaptic strength and thus triggers the neurotransmitter release. The modeling and analysis of calcium dynamics in neuron cell becomes necessary for deeper understanding of the processes involved. A mathematical model has been developed for cylindrical shaped neuron cell by incorporating physiological parameters like buffer, diffusion coefficient, and association rate. Appropriate initial and boundary conditions have been framed. The closed form solution has been developed in terms of modified Bessel function. A computer program has been developed in MATLAB 7.11 for the whole approach.Keywords: Laplace Transform, Modified Bessel function, reaction diffusion equation, diffusion coefficient, excess buffer, calcium influx
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19622444 Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field
Authors: N.S. Tomer, Phool Singh, Manoj Kumar
Abstract:
The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.Keywords: Heat Transfer, Magnetic Field, Porosity, Viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492443 Curvelet Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.
Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6202442 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding
Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi
Abstract:
A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15652441 Resonant DC Link in PWM AC Chopper
Authors: Apinan Aurasopon
Abstract:
This paper proposes a resonant dc link in PWM ac chopper. This can solve the spike problems and also reduce the switching loss. The configuration and PWM pattern of the proposed technique are presented. The simulation results are used to confirm the theory.Keywords: PWM ac chopper and Resonant dc link.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25082440 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants
Authors: Nisha Budhwar, Sunita Daniel
Abstract:
In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.Keywords: Susceptible, exposed, infective, recovered, infective immigrants, reproduction number, Lyapunov function, equilibrium points, global stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12952439 A Novel Technique for Ferroresonance Identification in Distribution Networks
Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor
Abstract:
Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.
Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14242438 The Incidence of Metabolic Syndrome in Women with Impaired Reproductive Function According to Astana, Kazakhstan
Authors: A. T. Nakysh, A. S. Idrisov, S. A. Baidurin
Abstract:
This work presents the results of a study the incidence of metabolic syndrome (MetS) in women with impaired reproductive function (IRF) according to the data of Astana, Kazakhstan. The anthropometric, biochemical and instrumental studies were conducted among 515 women, of which 53 patients with MetS according to IDF criteria, 2006, were selected. The frequency of occurrence of the IRF, due to MetS is 10.3% of cases according to the data of Astana. In women of childbearing age with IRF and the MetS, blood pressure (BP), indicators of carbohydrate and lipid metabolism were significantly higher and the level of high density lipoprotein (HDL) significantly lower compared to the same in women with the IRF without MetS. The hyperandrogenism, the hyperestrogenemia, the hyperprolactinemia and the hypoprogesteronemia were found in the patients with MetS and IRF, indicating the impact of MetS on the development of the polycystic ovary syndrome in 28% of cases and hyperplastic processes of the myometrium in 20% of cases.
Keywords: Dyslipidemia, insulin resistance, metabolic syndrome, reproductive disorders, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17212437 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers
Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur
Abstract:
Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).Keywords: Ranking function, Generalized trapezoidal fuzzy numbers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27172436 Function of Fractals: Application of Non-linear Geometry in Continental Architecture
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the 70's until today and has generated significant styles such as deconstructivism and parametricism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.
Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7702435 Wavelet-Based ECG Signal Analysis and Classification
Authors: Madina Hamiane, May Hashim Ali
Abstract:
This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm. The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.
Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12732434 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface
Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu
Abstract:
It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.
Keywords: Robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22362433 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels
Authors: Rajoo Pandey
Abstract:
Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.
Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18912432 Noise Removal from Surface Respiratory EMG Signal
Authors: Slim Yacoub, Kosai Raoof
Abstract:
The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results.Keywords: Surface EMG, Adaptive, Matching Pursuit, Powerline interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43252431 Traceable Watermarking System using SoC for Digital Cinema Delivery
Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi
Abstract:
As the development of digital technology is increasing, Digital cinema is getting more spread. However, content copy and attack against the digital cinema becomes a serious problem. To solve the above security problem, we propose “Additional Watermarking" for digital cinema delivery system. With this proposed “Additional watermarking" method, we protect content copyrights at encoder and user side information at decoder. It realizes the traceability of the watermark embedded at encoder. The watermark is embedded into the random-selected frames using Hash function. Using it, the embedding position is distributed by Hash Function so that third parties do not break off the watermarking algorithm. Finally, our experimental results show that proposed method is much better than the convenient watermarking techniques in terms of robustness, image quality and its simple but unbreakable algorithm.Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip and additional watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852430 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.
Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4172429 Robust Nonlinear Control of Two Links Robot Manipulator and Computing Maximum Load
Authors: Hasanifard Goran, Habib Nejad Korayem Moharam, Nikoobin Amin
Abstract:
A new robust nonlinear control scheme of a manipulator is proposed in this paper which is robust against modeling errors and unknown disturbances. It is based on the principle of variable structure control, with sliding mode control (SMC) method. The variable structure control method is a robust method that appears to be well suited for robotic manipulators because it requers only bounds on the robotic arm parameters. But there is no single systematic procedure that is guaranteed to produce a suitable control law. Also, to reduce chattring of the control signal, we replaced the sgn function in the control law by a continuous approximation such as tangant function. We can compute the maximum load with regard to applied torque into joints. The effectivness of the proposed approach has been evaluated analitically demonstrated through computer simulations for the cases of variable load and robot arm parameters.
Keywords: Variable structure control, robust control, switching surface, robot manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202428 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems
Authors: Dae-Hee Son, Soon-Ryul Nam
Abstract:
The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.
Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF, rate of change of frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22072427 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37372426 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20382425 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)
Authors: Behrouz Mosayebi Dehkordi
Abstract:
Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.
Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632424 A Novel Microarray Biclustering Algorithm
Authors: Chieh-Yuan Tsai, Chuang-Cheng Chiu
Abstract:
Biclustering aims at identifying several biclusters that reveal potential local patterns from a microarray matrix. A bicluster is a sub-matrix of the microarray consisting of only a subset of genes co-regulates in a subset of conditions. In this study, we extend the motif of subspace clustering to present a K-biclusters clustering (KBC) algorithm for the microarray biclustering issue. Besides minimizing the dissimilarities between genes and bicluster centers within all biclusters, the objective function of the KBC algorithm additionally takes into account how to minimize the residues within all biclusters based on the mean square residue model. In addition, the objective function also maximizes the entropy of conditions to stimulate more conditions to contribute the identification of biclusters. The KBC algorithm adopts the K-means type clustering process to efficiently make the partition of K biclusters be optimized. A set of experiments on a practical microarray dataset are demonstrated to show the performance of the proposed KBC algorithm.Keywords: Microarray, Biclustering, Subspace clustering, Meansquare residue model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16152423 Switching Rule for the Exponential Stability and Stabilization of Switched Linear Systems with Interval Time-varying Delays
Authors: Kreangkri Ratchagit
Abstract:
This paper is concerned with exponential stability and stabilization of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton-s formula, a switching rule for the exponential stability and stabilization of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability and stabilization of the systems are first established in terms of LMIs. Numerical examples are included to illustrate the effectiveness of the results.
Keywords: Switching design, exponential stability and stabilization, switched linear systems, interval delay, Lyapunov function, linear matrix inequalities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15252422 General Haemodynamics, Aerobic Potential and Strategy for Adaptation of Students to Team Sports
Authors: V.A. Baronenko, S.I. Bugreeva, K.R. Mekhdieva
Abstract:
Differentiated impact of team sports (basketball, indoor soccer, handball) on general haemodynamics and aerobic potential of students who specialize in technical subjects is detected only on the fourth year of studies in the institute of higher education. Those who play basketball and indoor soccer have shown increase of stroke and minute volume of blood indices, pumping and contractile function of the heart, oxygenation of blood and oxygen delivery to tissues, aerobic energy supply and balance of sympathetic and parasympathetic activity of the nervous regulation mechanism of the circulatory system. Those who play handball have shown these indices statistically decreased. On the whole playing basketball and indoor soccer optimizes the strategy for adaptation of students to the studying process, but playing handball does the opposite thing. The leading factor for adaptation of students is: those who play basketball have increase of minute blood volume which stipulates velocity of the system blood circulation and well-timed oxygen delivery to tissues; those who play indoor soccer have increase of power and velocity of contractile function of the heart; those who play handball have increase of resistance of thorax to the system blood flow which minimizes contractile function of the heart, blood oxygen saturation and delivery of oxygen to tissues.
Keywords: team sports, general haemodynamics, aerobic potential, strategy for adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959