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Optimization of Slider Crank Mechanism Using
Design of Experiments and Multi-Linear Regression
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Abstract—Crank shaft length, connecting rod length, crank angle,
engine rpm, cylinder bore, mass of piston and compression ratio are
the inputs that can control the performance of the slider crank
mechanism and then its efficiency. Several combinations of these
seven inputs are used and compared. The throughput engine torque
predicted by the simulation is analyzed through two different
regression models, with and without interaction terms, developed
according to multi-linear regression using LU decomposition to solve
system of algebraic equations. These models are validated. A
regression model in seven inputs including their interaction terms
lowered the polynomial degree from 3™ degree to 1% degree and
suggested valid predictions and stable explanations.

Keywords—Design of experiments, regression analysis, SI
Engine, statistical modeling.

NOMENCLATURE
SCM Slider crank mechanism
TDC Top dead center
BDC Bottom dead center
OHV Over head valve
r? Coefficient of determination
Y Experimental response
Y Predicted response
LSM Least square method

1. INTRODUCTION

ESIGN of experiments is a series of tests in which

purposeful changes are made to the input variables of a
system or process. The effects on response variables are
measured in order to understand cause-and-effect relationships
on the system.

Perceptions on the framework or process can prompt
speculations about what influences the framework to work;
however; trials of the sort portrayed above are required to show
that these hypotheses are right. Design of experiments is widely
applicable to both physical processes and computer simulation
models. Design of experiments is a powerful tool for expanding
the amount of data picked up from an investigation while
limiting the amount of data to be gathered.

Abdul Samad and Zainol [1] studied ferulic acid production,
several factors such as temperature, pH, agitation, water-to-
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substrate ratio, volume of inoculums, fermentation time, and
type of co-culture can influence the use of co-culture for ferulic
acid production from banana stem waste. Among the deciding
factors, the primary factor of pH and the influence of
temperature and fermentation time had the most grounded
impact on the production of ferulic acid.

Pawlak et al. [2] used design of experiments approach to
prepare a mathematical model for selective laser melting
(SLM), a technology used to produce objects from a wide
variety of materials. The group of materials handled in this
innovation involves stainless steel, CoCr, titanium and
aluminum alloys and is constantly extending to incorporate new
materials. It was demonstrated that data on linear energy density
and scan velocity are not adequate to depict the SLM procedure,
and that it is important to give definite estimations of
component parameters.

Psychological stress has for quite some time been a quiet
executioner, debilitating ordinary physiological capacities and
prompting to an assortment of diseased conditions. Full
factorial design was utilized by Kala et al. [3] for the
development and optimization of psychological stress model in
mice by applying different stressors: slanted cage, restraint, no
bedding, dirty bedding and isolation at two time duration levels
of 30 and 60 min. The statistical data showed that a quadratic
model was fitted to the data obtained and all factors were found
to have a significant role.

Turboelectric generators based on contact electrification and
electrostatic induction have recently emerged as a promising
mechanical energy harvesting technique. Making prediction of
the output voltage of a turboelectric generator is a challenge. In
addition, structural parameters such as area, gap and dielectric
thickness, which affect the output voltage of the generator, have
been investigated individually and with their interaction effects.
Vasandani et al. [4] established two meta-models as a result of
a 23 full factorial design. The models have been verified.

The applications of composite-metal stacks and fiber metal
laminates (FMLs) are increasingly being used in aerospace
structures due to their enhanced mechanical properties
compared to composites or metals alone. During drilling of
glass aluminum reinforced epoxy (GLARE) fiber-metal
laminates: cutting forces, surface roughness, cutting tool
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condition and post-machining micro-hardness of the surface of
the upper and lower aluminum sheets near the edge of drilled
holes were investigated. Giasin et al. [5] used analysis of
variance (ANOVA) to evaluate the impact of cutting
parameters, and cooling conditions, and their percentage
contributions when drilling GLARE.

In automotive technology field, there was an accelerated
invention and innovation in suspension design. Mitra et al. [6]
found the ideal combination of suspension and steering
geometry parameters such as tire pressure, damping coefficient,
spring stiffness, sprung mass, camber, toe and wheel speed, so
that the Ride Comfort (RC) is increased while maintaining an
optimal degree of Road Holding using Design of Experiments.
The high R? value shows the high reliability and predictability
of the experimental models.

D’Ambrosio and Ferrari [7] evaluated the potential of the
after-injection versus engine-out emissions, combustion noise
and brake specific fuel consumption for a Euro 5 diesel engine
with a reduced compression ratio 16.3:1. Effects of injection
strategies that feature either pilot and after-injection shots or
double-pilot and single-after injection shots have been assessed
experimentally in the presence of high EGR fractions.
Calibrations with triple and quadruple injection schedules have
been optimized by means of a design of experiments procedure.
The experimental data refer to different steady-state working
conditions that are representative of passenger car engine
applications over the European homologation cycle.

Li et al. [8] used design of experiments and fractional
factorial design to investigate the way that injection strategy
might affect performance and emissions formation of reactivity
controlled compression ignition engines RCCI. Six factors,
namely the first start of injection (SOI) timing, the first injection
duration (ID), the second SOI timing, the second ID, the diesel
mass fraction in the first injection and the ratio of natural gas to
total air, were considered. 16 simulated runs were conducted to
evaluate the performance and emissions of an engine. The
results show that premixed natural gas, which is the most
dominant one, has a positive correlation with indicated power,
and could reduce Carbon Monoxide (CO), Nitrogen Oxides
(NOx) and soot emissions simultaneously. To further reduce
NOy, both retarded second SOI timing and extended second 1D
are suggested.

Tashtoush et al. [9] tested several bio-source-fuels like fresh
and waste vegetable oil and waste animal fat at different injector
pressures (120, 140, 190, 210 bar) in a direct-injection,
naturally aspirated, single-cylinder diesel engine with a design
injection pressure of 190 bar. Using factorial analysis, the effect
of injection pressure (Pi) and fuel type on three engine
parameters, namely, combustion efficiency (Zc), mass fuel
consumption (my) and engine speed (N) was examined. It was
found that Pi and fuel type significantly affected both Zc¢ and
my, while they had a slight effect on engine speed.

Da Silva. et al. [10] measured the behavior of the burrs’
geometries generated in nine different positions of the edge of
the work piece during face milling of motor engine blocks,
varying thus the tool exit angle. During the tests the cutting
speed, the feed rate, the depth of cut and the flank wear were
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varied. The wear and the tool exit angle had significant
influences on the burr size. The greater the flank wear and the
exit angle, the bigger the burr. The burr sizes were reduced with
increasing the feed rate and in some cases with the depth of cut,
but increases when the cutting speed was enhanced.

Trezona et al. [11] carried out a full factorial experimental
investigation into factors affecting the resistance of a
commercial acrylic/melamine automotive clear coat to erosion
by silica sand particles. The factor variables and their ranges
were: particle size, temperature, impact angle, particle velocity
and the baking process applied to the coating. A linear
regression model with r?=97.5% was generated to evaluate the
erosion response of the coating. The regression coefficients of
this model evaluate the strengths of the impacts of every one of
the wvariables. Interactions between the factors were
distinguished. Specifically, the glass transition of the coating,
which happens at 40°C, has a noteworthy impact on its response
to erosion. The study has permitted the combinations of
conditions that would be of most worry for car paint clients to
be recognized.

In the prediction of the hydrodynamics of a liquid—solid
circulating fluidized bed, Palkar and Shilapuram [12] studied
the effects of the interactions among the independent factors
considered on the performance variables. Different statistical
models, for example the linear, two-factor association,
quadratic and cubic models are tried. The model has been
created to foresee reactions for example average solids holdup
and solids circulation rate. The authenticity of the created
regression model is checked utilizing the analysis of variance.
Besides, the model created was contrasted with a test dataset to
survey its competence and accuracy.

The use of daylight in buildings to save energy while
providing satisfactory environmental comfort has increased.
Integration of the day lighting and thermal energy systems is
necessary for environmental comfort and energy efficiency.
Kim et al. [13] developed an integrated model for a day lighting,
heating, ventilating and air conditioning (IDHVAC) system to
predict building energy performance by artificial lighting
regression models. The design of experiments (DOE) method
was applied to generate the database that was used to train
robust model without over fitting problems. The IDHVAC
system was optimized using the integrated model to minimize
total energy consumption while satisfying both thermal and
visual comfort for occupants.

Dong and Sartaj [14] investigated an application of
microwave (MW) radiation followed by aeration for the
purpose of ammonia removal from both synthetic solutions and
landfill leachate. 100 mL of synthetic solution or landfill
leachate was subjected to MW radiation for 30, 45, 60, 90 and
120 s under 50 and 100% power output level and a pH of 10,
10.5 and 11. The samples were then aerated for 10 min. The
initial, after MW application and final total ammonia nitrogen
(TAN) were measured. Design of experiments and factorial
design were applied to evaluate and optimize the effects of pH,
MW energy level and microwave power output. Results
confirmed that the sequential microwave/aeration process was
an effective approach for removal of ammonia from aqueous
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systems. r* of 0.941 indicates that the observed results fitted
well with the model prediction.

The system of edges sealing of vacuum glass boards is being
used in an assortment of manufacturing applications for
example in displays and home apparatuses. The sealing states
of a vacuum glass board firmly influence its key execution
parameters such as its isolation and intensity. Kim and Jeon [15]
established a regression models for estimating the edge
thickness, deflection, and maximum radius of the sealed part,
which were considered as shape parameters. Four parameters;
gas flow rate, torch movement speed, distance between the
torch and the glass panels and the torch nozzle angled were
selected as process parameters for the edge sealing process. The
impacts of the procedure parameters on the shape parameters
and in addition the interactions between them were tested, and
a polynomial regression model that considered these
interactions was set up. The plausibility of all the regression
models was confirmed through analysis of variance.

Njoyaa and Hajjaji [16] investigated the changes in
microstructure and technical properties of vitrified ceramic
samples, prepared from kaolinitic-clay and feldspar-rich raw
materials from Cameroon, against feldspar content, firing
temperature and soaking time by X-ray diffraction and scanning
electron microscope, and using full factorial design. The
advancement of the two previous stages enhanced the studied
ceramic properties. The consequences of the full factorial
design demonstrated that temperature was the most effective
variable, and its rise positively affected ceramic properties. The
impacts of the flux content and soaking time were to some
degree equivalent and their effects were like that of
temperature. The impacts of interactions between the variables
were moderately less essential and their weights contrasted for
properties.

Controlling process parameters of lost foam casting (LFC)
enables this process to produce defect-free complex shape
castings. Jafari et al. [17] carried out an experimental
investigation on lost foam casting of an Al-Si—Cu cast alloy.
The impacts of pouring temperature, slurry viscosity, shaking
time and sand size on surface finish, shrinkage porosity and
eutectic silicon interval of thin-wall molding were inspected. A
full two-level factorial design of empirical strategy was utilized
to distinguish the huge manufacturing factors influencing the
properties of casting. Pouring temperature was found as the
most critical factor influencing Al-Si—Cu lost foam casting
quality. It was shown that flask vibration time interacted with
pouring temperature influenced eutectic silicon spacing and
porosity percentage significantly. Furthermore, variation in
slurry viscosity showed no significant effect on the evaluated
properties compared to other parameters.

Laser cladding is a complicated process controlled by most
parameters such as laser beam, properties of matrix and powder
and treatment status of base material. Zhang et al. [18] found
that the best way to choose the working conditions cheaply and
fast is to use the processing simulation after regression design
based on the experimental results of 2Cr13 steel cladding with
diode laser robotized system. The influence degrees of
technological factors (laser power, laser scanning speed,
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defocusing amount and powder feeding rate) on the dimensions
and hardness of laser clad layers were investigated.

Hydrogen is predicted to conduct a huge part in future energy
systems. The proficient generation of hydrogen at the very least
cost and in an environmentally adequate way is critical for the
advancement of a hydrogen-including economy. An imperative
part of economical advancement is limiting irreversibility.
Hajjaji et al. [19] examined the impact of the reformer working
temperature, pressure and steam to carbon proportion (S/C) on
the procedure exergetic effectiveness. By using design of
experiment a second order polynomial mathematical model has
been obtained through correlating the exergetic efficiencies
with the reformer operating parameters.

II. SLIDER CRANK MECHANISM (SCM)

Slider crank mechanism is one of the most useful
mechanisms in the present day application for internal
combustion engines and numerous other applications such as
robotics, pumps and compressors. SCM is a modification of
four bar chain. It consists of one sliding pair and three turning
pairs, see Fig. 1.

The SCM usually found in Reciprocating Steam engine
mechanism and used to convert rotary motion to reciprocating
motion and vice versa. However, when it is used in automobile
engine, it converts the available energy (force on the piston) to
the desired energy (torque of the Crank shaft) which is used to
move a vehicle.

Reciprocating pumps, reciprocating compressors, and steam
engines are other examples of machines derived from the slider
crank mechanism.

KOHLER ENGINE CH270: is a spark ignition engine with
four strokes, single cylinder design with a cast iron cylinder
bore and overhead valve for easy access.

TABLE ]
SPECIFICATIONS OF THE KOHLER ENGINE CH270
4 Stroke, Gasoline, OHV
Cast iron cylinder liners, Aluminum block

Rated Power (hp / kW) 7/52
Displacement (cec) 208
Bore (mm) 70
Stroke (mm) 54
Crank radius (mm) 27
Compression Ratio 8.5:1
Lubrication Splash
Rated Speed (RPM) 4000

The working cycle is completed after four strokes of the
piston or two revolutions of the crank shaft. This achieved by
carrying out suction, compression, power and exhaust processes
in each stroke, see Figs. 2 and 3.

1) Intake: It is also known as induction or suction which
begins at TDC and ends at BDC. The intake valve must be
in the open position while the piston pulls an air-fuel
mixture into the cylinder by producing vacuum pressure
into the cylinder through its downward motion.

2) Compression: This stroke begins at BDC or just at the end
of the suction stroke and ends at TDC. The piston
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compresses the air-fuel mixture in preparation for ignition
during the power stroke. Both the intake and exhaust valves
are closed during this stage.

y

’_i& X.Lf____,—-—'f;_f"

T
—

Fig. 1 Schematic representation of slider crank mechanism

3) Combustion: It is also known as power or ignition which
starts at the second revolution of the four stroke cycle, at
this point the crankshaft has completed a full 360-degree
revolution. While the piston is at TDC, the compressed air-
fuel mixture is ignited by a plug, forcefully returning the
piston to BDC.

4) Exhaust: During the exhaust stroke, the piston once again
returns from BDC to TDC while the exhaust valve is open.
This action expels the spent air-fuel mixture through the
exhaust valve.

Power

Compression Exhaust

Fig. 2 Four strokes cycle

End of
combustion
P
rtg, Exhaust valve
Intake (b”y;y
Clg
valve opens op
\ Exhaust
AN e ':
Intake
TDC BDC v

Fig. 3 Pressure-volume diagram for 4-stroke spark ignition engine
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II1. STATISTICAL DESIGN OF EXPERIMENTS

Regression analysis allows the simultaneous study of the
effects that several factors may have on the optimization of a
particular process. It determines which factors have the
important effects on the response as well as how the effect of
one factor varies with the level of the other factors. The effects
are the differential quantities expressing how a response
changes as the levels of one or more factors are changed.

Regression analysis allows measuring the interaction
between each different group of factors. The interactions are the
driving force in many optimizations of the processes. Without
the use of Regression analysis, some important interactions may
remain undetected, and the overall optimization may not be
attained.

In this investigation, seven operating factors were chosen as
independent variables, namely: Crank angle (x;), Engine RPM
(x2), Compression ratio (x3), Crank shaft length (x4),
Connecting rod length (xs), Cylinder bore (xs) and Mass of
piston (x7). The natural values of each factor and their
respective levels are shown in Table II.

TABLE II
THE EXPERIMENTAL RANGES AND LEVELS OF INDEPENDENT VARIABLES
Factors Levels
Crank Angle Xi (Degree) 0° 180°
Engine Speed X> (RPM) 1500 3500
Compression Ratio X3 6 12
Crank Shaft Length X4 (mm) 10 40
Connecting Rod Length Xs (mm) 60 110
Cylinder Bore Xe (mm) 50 100
Mass Of Piston X7 (g) 200 700

A dynamical analysis - Complete Position, Velocity,
Acceleration and Force analysis - of single cylinder SI engine
was conducted. Configuration of the engine to which the
crankshaft belongs is shown in Table I. The equations which
are used in MATLAB provided the values of angular velocity
and angular acceleration of the crank shaft and pressure force at
the piston tip. The advantage of using MATLAB programming
is that any changes in the input could be made very easily and
solution quickly obtained.

The design performed according to TABLE III was
composed of 20 random runs to see the effect on the output
engine torque Y to fit the following polynomial equation:

Y= bo + Z{‘zlbixi + € (1)

where Y is the estimated response of Engine torque; by is the
intercept of the plane; b; is the linear and interaction term
effects.

A regression analysis is carried out to determine the
coefficients of the response model by, by, ....bk, as well as their
standard errors and their significance, in addition to the constant
bo and error € terms.
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TABLE III
RANDOM RUNS OF SLIDER CRANK MECHANISM FORCE ANALYSIS
Run no. Xi X X3 X4 Xs Xs X7 Y

1 148 2400 114 0.022  0.099 0.07 0.61 117.949
2 136 2200 7.3 0.034  0.108 0.066 0.54 111.1763
3 79 3200  10.6  0.015  0.103 0.1 046  245.8034
4 159 2700 6.9 0.016 0.08 0.088 0.62  46.62158
5 142 2100 9.2 0.012  0.065 0.056 0.54 35.26573
6 89 1800 9 0.014 0.062 0.093 048 166.1124
7 167 2900 9.5 0.035  0.104 0.1 0.2 149.1107
8 155 2700 12 0.026  0.084 0.09 031 221.1714
9 90 3300 9.5 0.036  0.097 0.079 0.32  309.6958
10 120 1600 9.8 0.03 0.097  0.095 0.7 407.7961
11 138 2700  11.6  0.027 0.06 0.056  0.63 119.0929
12 87 3200 7.2 0.027  0.092 0.051 0.51 59.85134
13 65 1600 8.9 0.015  0.066 0.06 0.27 60.947
14 34 1500 9.8 0.018  0.087 0.085 0.45  94.90406
15 96 2400 6.7 0.025  0.103  0.094 0.33  206.9902
16 38 2600 9.9 0.022 0.07 0.098 0.24 158.2207
17 19 1700 7 0.029  0.089 0.052 0.67 23.165
18 131 3000 6.3 0.036  0.107 0.1 0.63  232.7235
19 141 2500 7 0.022  0.066 0.051 0.67 30.32325
20 54 2100 8 0.024  0.093 0.051 0.62 57.70045

IV.RESULTS AND DISCUSSION

The model equation for engine torque was obtained after
performing twenty runs and discarding the insignificant effects
using some statistical tests to obtain r> which provides a
measure of how well observed outcomes are replicated by the
model, based on the proportion of total variation of outcomes
explained by the model.

Regression coefficients were estimated by least square
method (LSM) techniques using LU-Decomposition to solve
system of algebraic equations. The results obtained shown in
Tables IV-VII. Starting with first order model, TABLE IV
represents the coefficients of the response model.

TABLE IV
COEFFICIENTS OF THE RESPONSE MODEL IN 1ST ORDER POLYNOMIAL
EQUATION R*>=0.68928

Factors  Coefficient ~ Factors  Coefficient
bo -496.7619 X4 5331.1316
Xi -0.2597 Xs 175.5633
X2 -4.95x10° Xs 3573.5383
X3 20.0506 X7 142.7104

A comparison between the experimental data and the model
obtained from first order polynomial equation (2) presented in
Fig. 4.

Y, = —496.7619 — 0.2597 X, — 4.95x107 5 X, +
20.0506 X3 + 5331.1316 X, + 175.5633 X +
3573.5383 X, + 142.7104 X, )

In first order polynomial, 1> was about 0.68928 and it is clear
from Fig. 4 that the model obtained cannot capture the
experimental results, so a second order polynomial model was
introduced in Table V.
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Fig. 4 Analysis of quality of 1% order model: comparison between
experimental and predicted responses

TABLE V
COEFFICIENTS OF THE RESPONSE MODEL IN 2"’ ORDER POLYNOMIAL
EQUATION R?=0.9621

Factors Coefficient Factors Coefficient
bo - 1139.659 X2 -0.0402
Xi 7.4983 X2 -1.87x10°
X 0.0614 X3? 3.5534
X3 -39.2918 X4 436143.5626
Xa -15473.9663 Xs? -157418.764
Xs 26585.4824 X¢* 5751.9921
Xe 2351.9549 X7 1187.5795
X7 -969.5481

By using the same data in TABLE III and by using least
square techniques and LU-Decomposition to solve system of
equations, the results obtained from second order model are
shown in (3).

Y, = —1139.659 + 7.4983 X; +0.0614 X, — 39.2918 X; —
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15473.9663 X, + 26585.4824 X5 + 2351.9549 X¢ —
969.5481 X, — 0.0402 X, — 1.87x107°X,% + 3.5534 X% +
436143.5626 X,2 — 157418.764 X2 + 5751.9921 X2 +
1187.5795 X,2 3)

2nd order poln.
450 .

e |7 Experimental Value
400 ; Predicted Value ]

350 -
300+
250 -
200
150 -
100 -

50r

=0g 5 10 15 20
Run No.
Fig. 5 Analysis of quality of 2"d order model: comparison between
experimental and predicted responses

The correlation coefficient obtained for this model was
0.9621. Fig. 5 shows coincide between the experimental results
and the model in many points. A polynomial from third order
(4) is conducted by using least square techniques and solving
the equations by using LU-Decomposition and the coefficients
shown in TABLE VI.

TABLE VI
COEFFICIENTS OF THE RESPONSE MODEL IN 3*’ ORDER POLYNOMIAL
EQUATION R? = 0.9975

Factors Coefficient Factors Coefficient
bo -997.8756 X4 3240279.5729
X1 29714 Xs? -55121.8337
X -0.8371 X¢? 406217.4986
X3 419.0146 X7 -13783.5895
Xa -81660.6305 X -8.99x10°
Xs 9239.5551 X2? -6.2x10°
X -25859.3023 X5? 1.2892
X7 5480.6054 X4 -38441627.4846
X2 -0.0024 X5 50931.3132
X2 0.0004 Xe -1850644.6887
X3? -39.7317 X7 10863.562

Substitute coefficients in equation we get:

Y, = —997.8756 + 29714 X, — 0.8371X, + 419.0146 X5 —
81660.6305 X, + 9239.5551 X5 — 25859.3023 X, +

5480.6054 X, — 0.0024 X,% + 0.0004 X,2 — 39.7317 X, +
3240279.5729 X,? — 55121.8337 X2 + 406217.4986 X% —
13783.5895 X,% — 8.99x1075 X3 — 6.2x1078X,% + 1.2892 X, —
38441627.4846 X,3 + 509313132 X® — 1850644.6887 X +
10863.562 X3 4)

Fig. 6 shows that the third order model is the most coincide
with the experimental data and the coefficient of determination
2 =0.9975. We notice a similarity between the curves in most
of points.
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Fig. 6 Analysis of quality of 3" order model: comparison between
experimental and predicted responses

Using interaction between input variables:

Y, = bo+ X biXi+ X1 by XiXj + € (5
j=2

and solving system of equations obtained, we get the model
coefficients shown in TABLE VII.

TABLE VII
COEFFICIENTS OF THE RESPONSE MODEL IN 15"ORDER POLYNOMIAL
EQUATION WITH INTERACTION TERMS R? =0.99992

Factors Coefficient Factors Coefficient
bo 860.80306 Xa*Xy 5.2689
Xi -0.39613 Xa*Xs 3.59799
X2 -0.072 Xa2*Xs -0.11352
X3 -92.52979 Xo*X5 -0.61657
X4 7251.44271 X3*Xa -1010.15828
Xs -1967.21752 X3*Xs 125.00625
Xs -3400.28652 X3*Xs 404.99296
X7 -1028.9508 X3*¥X7 48.59408

Xi*Xz -0.00141 X4*Xs -76543.39541

Xi*Xs 0.42717 X4*Xe -146170.69637

Xi*Xy 138.21361 X4*X7 -1804.7426

X1*Xs -134.6116 Xs5*Xs 32381.17316

X1*Xs 49.25636 Xs*X7 11769.70331

Xi*X7 10.50497 X6*X7 -814.0548

Xo*Xs 0.00155

The equation obtained will be as follows and the coefficient
of determination 1> = 0.99992.

Y, = 860.80306 — 0.39613X; — 0.072 X, — 92.52979 X; +
7251.44271 X, — 1967.21752 X5 — 3400.28652 X, —
1028.9508 X, — 0.00141 XX, + 0.42717 X,X; +

13821361 X, X, — 134.6116 X, X5 + 49.25636 X; X4 +
10.50497 X; X, + 0.00155 X,X5 + 5.2689 X, X, +

3.59799 X,X5 — 0.11352 X,X4 — 0.61657 X,X, —

1010.15828 X;X, + 125.00625 X3Xs + 404.99296 X;X, +
48.59408 X3X, — 76543.39541 X, X5 — 146170.69637 X4X¢ —
1804.7426 X,X, + 32381.17316 XsX¢ + 11769.70331 XsX; —
814.0548 XX, (6)
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Fig. 7 Analysis of quality of 1st order interaction model: Comparison
between experimental and predicted responses

Fig. 7 and r? indicate that the mathematical model is adequate
and that there is consistency between the experimental and
predicted values of the response. Also using equation from first
ordaser with interaction terms gives better correlation from
third order polynomial without interaction.

In the 3™ order model without interaction terms, connecting
rod length Xs has the strongest effect on the response since its
coefficient bs = 9239.5551 is larger than the coefficients of the
other investigated factors while in interaction model Crank
Shaft Length X4 has the strongest effect on the response
bs=7251.44271.

The negative sign bs= - 81660.6305 in 3™ order model
indicates that there is an inverse relation between crank shaft
length X4 and the response engine torque while the positive sign
bs = 7251.44271 in interaction model indicates an opposite
trend.

The most significance interactions found by the design of
experiments are between crank shaft length Xsand cylinder bore
X, bag=- 146170.69637.

V. CONCLUSION

A regression model was developed according to multi-linear
regression using LU decomposition to determine the main
effects of crank shaft length, connecting rod length, crank angle,
engine rpm, cylinder bore, mass of piston and compression ratio
on engine torque. However, design of experiments did not
provide the optimal conditions; it represented an understanding
on the influence of several variables on the engine torque and
their trends and behavior.

The polynomial degree lowered from 3™ degree to 1% degree
when interaction terms were taken in consideration resulting in
higher r2.

The regression equation obtained shows that crank shaft
length, connecting rod length and cylinder bore have an
individual influence on the engine torque. The significance
interactions found through the design of experiments between
crank shaft length — cylinder bore X4Xs and between crank shaft
length— connecting rod length X4Xs.
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