Search results for: learning objects
1616 3D-Printing Plates without “Support”
Authors: Yasusi Kanada
Abstract:
When printing a plate (or dish) by an FDM 3D printer, the process normally requires support material, which causes several problems. This paper proposes a method for forming thin plates without using wasteful support material. This method requires several extraordinary parameter values when slicing plates. The experiments show that the plates can, for the most part, be successfully formed using a conventional slicer and a 3D printer; however, seams between layers spoil them and the quality of printed objects strongly depends on the slicer.Keywords: Fused deposition modeling (FDM), 3D printing, Support-less, Layer seam, Slicer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441615 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.
Keywords: Big data, bus headway prediction, machine learning, public transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631614 Classification of the Latin Alphabet as Pattern on ARToolkit Markers for Augmented Reality Applications
Authors: Mohamed Badeche, Mohamed Benmohammed
Abstract:
augmented reality is a technique used to insert virtual objects in real scenes. One of the most used libraries in the area is the ARToolkit library. It is based on the recognition of the markers that are in the form of squares with a pattern inside. This pattern which is mostly textual is source of confusing. In this paper, we present the results of a classification of Latin characters as a pattern on the ARToolkit markers to know the most distinguishable among them.
Keywords: ARToolkit library, augmented reality, K-means, patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18401613 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.
Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881612 Students' Acceptance of Incorporating Emerging Communication Technologies in Higher Education in Kuwait
Authors: Bashaiar Alsanaa
Abstract:
Never has a revolution affected all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aimed to fill the void of research conducted around that topic. The study explored students' acceptance of incorporating communication technologies in higher education in Kuwait. Students' responses to survey questions presented an overview of the e-learning experience in this country, and drew a framework through which implications and suggestions for future research were discussed to better serve the advancement of e-education in developing countries.Keywords: Communication technologies, E-learning, Kuwait, Social media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011611 Enhancing Critical Reflective Practice in Fieldwork Education: An Exploratory Study of the Role of Social Work Agencies in the Welfare Context of Hong Kong
Authors: Yee-May Chan
Abstract:
In recent decades, it is observed that social work agencies have participated actively, and thus, have gradually been more influential in social work education in Hong Kong. The neo-liberal welfare ideologies and changing funding mode have transformed the landscape in social work practice and have also had a major influence on the fieldwork environment in Hong Kong. The aim of this research is to explore the educational role of social work agencies and examine in particular whether they are able to enhance or hinder critical reflective learning in fieldwork. In-depth interviews with 15 frontline social workers and managers in different social work agencies were conducted to collect their views and experience in helping social work students in fieldwork. The overall findings revealed that under the current social welfare context most social workers consider that the most important role of social work agencies in fieldwork is to help students prepare to fit-in the practice requirements and work within agencies’ boundary. The fit-for-purpose and down-to-earth view of fieldwork practice is seen as prevalent among most social workers. This narrow perception of agency’s role seems to be more favourable to competence-based approaches. In contrast, though critical reflection has been seen as important in addressing the changing needs of service users, the role of enhancing critical reflective learning has not been clearly expected or understood by most agency workers. The notion of critical reflection, if considered, has been narrowly perceived in fieldwork learning. The findings suggest that the importance of critical reflection is found to be subordinate to that of practice competence. The lack of critical reflection in the field is somehow embedded in the competence-based social work practice. In general, social work students’ critical reflection has not been adequately supported or enhanced in fieldwork agencies, nor critical reflective practice has been encouraged in fieldwork process. To address this situation, the role of social work agencies in fieldwork should be re-examined. To maximise critical reflective learning in the field, critical reflection as an avowed objective in fieldwork learning should be clearly stated. Concrete suggestions are made to help fieldwork agencies become more prepared to critical reflective learning. It is expected that the research can help social work communities to reflect upon the current realities of fieldwork context and to identify ways to strengthen agencies’ capacities to enhance critical reflective learning and practice of social work students.
Keywords: Competence-based social work, fieldwork, neo-liberal welfare, critical reflective learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10091610 Vocational Skills, Recognition of Prior Learning and Technology: The Future of Higher Education
Authors: Shankar Subramanian Iyer
Abstract:
The vocational education, enhanced by technology and Recognition of Prior Learning (RPL) is going to be the main ingredient of the future of education. This is coming from the various issues of the current educational system like cost, time, type of course, type of curriculum, unemployment, to name the major reasons. Most millennials like to perform and learn rather than learning how to perform. This is the essence of vocational education be it any field from cooking, painting, plumbing to modern technologies using computers. Even a more theoretical course like entrepreneurship can be taught as to be an entrepreneur and learn about its nuances. The best way to learn accountancy is actually keeping accounts for a small business or grocer and learn the ropes of accountancy and finance. The purpose of this study is to investigate the relationship between vocational skills, RPL and new technologies with future employability. This study implies that individual's knowledge and skills are essential aspects to be emphasized in future education and to give credit for prior experience for future employability. Virtual reality can be used to stimulate workplace situations for vocational learning for fields like hospitality, medical emergencies, healthcare, draughtsman ship, building inspection, quantity surveying, estimation, to name a few. All disruptions in future education, especially vocational education, are going to be technology driven with the advent of AI, ML, IoT, VR, VI etc. Vocational education not only helps institutes cut costs drastically, but allows all students to have hands-on experiences, rather than to be observers. The earlier experiential learning theory and the recent theory of knowledge and skills-based learning modified and applied to the vocational education and development of skills is the proposed contribution of this paper. Apart from secondary research study on major scholarly articles, books, primary research using interviews, questionnaire surveys have been used to validate and test the reliability of the suggested model using Partial Least Square- Structural Equation Method (PLS-SEM), the factors being assimilated using an existing literature review. Major findings have been that there exists high relationship between the vocational skills, RPL, new technology to the future employability through mediation of future employability skills.
Keywords: Vocational education, vocational skills, competencies, modern technologies, Recognition of Prior Learning, RPL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7781609 Leveraging Reasoning through Discourse: A Case Study in Secondary Mathematics Classrooms
Authors: Cory A. Bennett
Abstract:
Teaching and learning through the use of discourse support students’ conceptual understanding by attending to key concepts and relationships. One discourse structure used in primary classrooms is number talks wherein students mentally calculate, discuss, and reason about the appropriateness and efficiency of their strategies. In the secondary mathematics classroom, the mathematics understudy does not often lend itself to mental calculations yet learning to reason, and articulate reasoning, is central to learning mathematics. This qualitative case study discusses how one secondary school in the Middle East adapted the number talk protocol for secondary mathematics classrooms. Several challenges in implementing ‘reasoning talks’ became apparent including shifting current discourse protocols and practices to a more student-centric model, accurately recording and probing student thinking, and specifically attending to reasoning rather than computations.Keywords: Discourse, reasoning, secondary mathematics, teacher development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10041608 Strategies for Developing e-LMS for Tanzania Secondary Schools
Authors: Ellen A. Kalinga, R. B. Bagile Burchard, Lena Trojer
Abstract:
Tanzania secondary schools in rural areas are geographically and socially isolated, hence face a number of problems in getting learning materials resulting in poor performance in National examinations. E-learning as defined to be the use of information and communication technology (ICT) for supporting the educational processes has motivated Tanzania to apply ICT in its education system. There has been effort to improve secondary school education using ICT through several projects. ICT for e-learning to Tanzania rural secondary school is one of the research projects conceived by the University of Dar-es-Salaam through its College of Engineering and Technology. The main objective of the project is to develop a tool to enable ICT support rural secondary school. The project is comprehensive with a number of components, one being development of e-learning management system (e-LMS) for Tanzania secondary schools. This paper presents strategies of developing e-LMS. It shows the importance of integrating action research methodology with the modeling methods as presented by model driven architecture (MDA) and the usefulness of Unified Modeling Language (UML) on the issue of modeling. The benefit of MDA will go along with the development based on software development life cycle (SDLC) process, from analysis and requirement phase through design and implementation stages as employed by object oriented system analysis and design approach. The paper also explains the employment of open source code reuse from open source learning platforms for the context sensitive development of the e-LMS for Tanzania secondary schools.
Keywords: Action Research Methodology, OOSA&D, MDA, UML, Open Source LMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22381607 A Protocol for Applied Consumer Behavior Research in Academia
Abstract:
A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.
Keywords: Marketing, experiential learning, consumer behavior, community partner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891606 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina M. R. Caridade, Ana Rita F. Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.
Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311605 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: Image forensics, computer graphics, classification, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11751604 Reinforcement Learning-Based Coexistence Interference Management in Wireless Body Area Networks
Authors: Izaz Ahmad, Farhatullah, Shahbaz Ali, Farhad Ali, Faiza, Hazrat Junaid, Farhan Zaid
Abstract:
Current trends in remote health monitoring to monetize on the Internet of Things applications have been raised in efficient and interference free communications in Wireless Body Area Network (WBAN) scenario. Co-existence interference in WBANs have aggravates the over-congested radio bands, thereby requiring efficient Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) strategies and improve interference management. Existing solutions utilize simplistic heuristics to approach interference problems. The scope of this research article is to investigate reinforcement learning for efficient interference management under co-existing scenarios with an emphasis on homogenous interferences. The aim of this paper is to suggest a smart CSMA/CA mechanism based on reinforcement learning called QIM-MAC that effectively uses sense slots with minimal interference. Simulation results are analyzed based on scenarios which show that the proposed approach maximized Average Network Throughput and Packet Delivery Ratio and minimized Packet Loss Ratio, Energy Consumption and Average Delay.
Keywords: WBAN, IEEE 802.15.4 Standard, CAP Super-frame, Q-Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6501603 Optoelectronic Automated System for Length and Profile Measurements
Authors: L. C. Gómez-Pavón, M. A. Rojas Aparicio, E. Juárez Ruiz, M. A. Flores Guerrero, and O. Gómez-de la Fuente
Abstract:
In this work the design and characterization of an optoelectronic automated measurement system it is presented. The optoelectronic devices of this system are an optical transmitter, the optical components and the optical receiver, which were selected for a great precision of the system. The mechanical system allows free displacement of the components as well as the devices that generate the movement. The results, length and profile of the objects are display in Lab View.Keywords: Automated, optoelectronic, triangulation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331602 Teachers’ Continuance Intention Towards Using Madrasati Platform: A Conceptual Framework
Authors: Fiasal Assiri, Joanna Wincenciak, David Morrison-Love
Abstract:
With the rapid spread of the COVID-19 pandemic, the Saudi government suspended students from going to school to combat the outbreak. As e-learning was not applied at all in schools, online teaching and learning have been revived in Saudi Arabia by providing a new platform called ‘Madrasati’. The Decomposed Theory of Planned Behaviour (DTPB) is used to examine individuals’ intention behaviour in many fields. Nevertheless, the factors that affect teachers’ continuance intention of the Madrasati platform have not yet been investigated. The purpose of this paper is to present a conceptual model in light with DTPB. To enhance the predictability of the model, the study incorporates other variables including learning content quality and interactivity as sub-factors under the perceived usefulness, students and government influences under the subjective norms, and technical support and prior e-learning experience under the perceived behavioural control. The model will be further validated using a mixed methods approach. Such findings would help administrators and stakeholders to understand teachers’ needs and develop new methods that might encourage teachers to continue using Madrasati effectively in their teaching.
Keywords: Madrasati, Decomposed Theory of Planned Behaviour, continuance intention, attitude, subjective norms, perceived behavioural control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5031601 Multi-Agent Systems for Intelligent Clustering
Authors: Jung-Eun Park, Kyung-Whan Oh
Abstract:
Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.
Keywords: Intelligent Clustering, Multi-Agent System, PCA, SOM, VC(Variance Criterion)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271600 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.
Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291599 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education
Authors: Raluca Ionela Maxim
Abstract:
Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.
Keywords: Design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761598 Online Think–Pair–Share in a Third-Age ICT Course
Authors: Daniele Traversaro
Abstract:
Problem: Senior citizens have been facing a challenging reality as a result of strict public health measures designed to protect people from the COVID-19 outbreak. These include the risk of social isolation due to the inability of the elderly to integrate with technology. Never before have Information and Communication Technology (ICT) skills become essential for their everyday life. Although third-age ICT education and lifelong learning are widely supported by universities and governments, there is a lack of literature on which teaching strategy/methodology to adopt in an entirely online ICT course aimed at third-age learners. This contribution aims to present an application of the Think-Pair-Share (TPS) learning method in an ICT third-age virtual classroom with an intergenerational approach to conducting online group labs and review activities. Research Question: Is collaborative learning suitable and effective, in terms of student engagement and learning outcomes, in an online ICT course for the elderly? Methods: In the TPS strategy a problem is posed by the teacher, students have time to think about it individually, and then they work in pairs (or small groups) to solve the problem and share their ideas with the entire class. We performed four experiments in the ICT course of the University of the Third Age of Genova (University of Genova, Italy) on the Microsoft Teams platform. The study cohort consisted of 26 students over the age of 45. Data were collected through online questionnaires. Two have been proposed, one at the end of the first activity and another at the end of the course. They consisted of five and three close-ended questions, respectively. The answers were on a Likert scale (from 1 to 4) except two questions (which asked the number of correct answers given individually and in groups) and the field for free comments/suggestions. Results: Groups achieve better results than individual students (with scores greater than one order of magnitude) and most students found TPS helpful to work in groups and interact with their peers. Insights: From these early results, it appears that TPS is suitable for an online third-age ICT classroom and useful for promoting discussion and active learning. Despite this, our work has several limitations. First of all, the results highlight the need for more data to be able to perform a statistical analysis in order to determine the effectiveness of this methodology in terms of student engagement and learning outcomes as future direction.
Keywords: Collaborative learning, information technology education, lifelong learning, older adult education, think-pair-share.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6371597 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient
Authors: Sobhy Fathy A. Hashesh
Abstract:
This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.
Keywords: ANPT, Flipped Classroom, 5Es learning Model, Kagan structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12711596 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12721595 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.
Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5021594 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10281593 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test
Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath
Abstract:
As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.
Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22741592 Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval
Authors: Hager Kammoun, Jean Charles Lamirel, Mohamed Ben Ahmed
Abstract:
In this paper, a model for an information retrieval system is proposed which takes into account that knowledge about documents and information need of users are dynamic. Two methods are combined, one qualitative or symbolic and the other quantitative or numeric, which are deemed suitable for many clustering contexts, data analysis, concept exploring and knowledge discovery. These two methods may be classified as inductive learning techniques. In this model, they are introduced to build “long term" knowledge about past queries and concepts in a collection of documents. The “long term" knowledge can guide and assist the user to formulate an initial query and can be exploited in the process of retrieving relevant information. The different kinds of knowledge are organized in different points of view. This may be considered an enrichment of the exploration level which is coherent with the concept of document/query structure.Keywords: Information Retrieval Systems, machine learning, classification, Galois lattices, Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11891591 Modeling Language for Machine Learning
Authors: Tsuyoshi Okita, Tatsuya Niwa
Abstract:
For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem.Keywords: Formal language, statistical inference problem, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151590 Forecasting Fraudulent Financial Statements using Data Mining
Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas
Abstract:
This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.Keywords: Machine learning, stacking, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30541589 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning
Authors: Chunming Xu
Abstract:
Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14471588 Implementing Education 4.0 Trends in Language Learning
Authors: Luz Janeth Ospina M.
Abstract:
The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.
Keywords: Active learning, education 4.0, higher education, pedagogical stance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7031587 Towards an E-Learning Platform Multi-Agent Based On the E-Tutoring for Collaborative Work
Authors: Badr Hssina, Belaid Bouikhalene, Abdelkrim Merbouha
Abstract:
This article presents our prototype MASET (Multi Agents System for E-Tutoring Learners engaged in online collaborative work). MASET that we propose is a system which basically aims to help tutors in monitoring the collaborative work of students and their various interactions. The evaluation of such interactions by the tutor is based on the results provided by the automatic analysis of the interaction indicators. This system is predicated upon the middleware JADE (Java Agent Development Framework) and e-learning Moodle platform. The MASET environment is modeled by AUML which allows structuring the different interactions between agents for the fulfillment and performance of online collaborative work. This multi-agent system has been the subject of a practical experimentation based on the interactions data between Master Computer Engineering and System students.Keywords: AUML, Collaborative work, E-learning, E-tutoring, JADE, Moodle, SMA, Web Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831