Search results for: Time varying regression
6757 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes
Authors: V. Churkin, M. Lopatin
Abstract:
The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second – 95,3%.Keywords: Bass model, generalized Bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18836756 The Effect of Sowing Time on Phytopathogenic Characteristics and Yield of Sunflower Hybrids
Authors: Adrienn Novák
Abstract:
The field research was carried out at the Látókép AGTC KIT research area of the University of Debrecen in Eastern-Hungary, on the area of the aeolain loess of the Hajdúság. We examined the effects of the sowing time on the phytopathogenic characteristics and yield production by applying various fertilizer treatments on two different sunflower genotypes (NK Ferti, PR64H42) in 2012 and 2013. We applied three different sowing times (early, optimal, late) and two different treatment levels of fungicides (control = no fungicides applied, double fungicide protection).
During our investigations, the studied cropyears were of different sowing time optimum in terms of yield amount (2012: early, 2013: average). By Pearson’s correlation analysis, we have found that delaying the sowing time pronouncedly decreased the extent of infection in both crop years (Diaporthe: r=0.663**, r=0.681**, Sclerotinia: r=0.465**, r=0.622**). The fungicide treatment not only decreased the extent of infection, but had yield increasing effect too (2012: r=0.498**, 2013: r=0.603**). In 2012, delaying of the sowing time increased (r=0.600**), but in 2013, it decreased (r= 0.356*) the yield amount.
Keywords: Fungicide treatment, genotypes, sowing time, yield, sunflower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18266755 A Comparison of Grey Model and Fuzzy Predictive Model for Time Series
Authors: A. I. Dounis, P. Tiropanis, D. Tseles, G. Nikolaou, G. P. Syrcos
Abstract:
The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes.Keywords: Fuzzy predictive model, grey model, local andglobal prediction, meteorological forecasting, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21556754 Internet of Things Based Process Model for Smart Parking System
Authors: Amjaad Alsalamah, Liyakathunsia Syed
Abstract:
Transportation is an essential need for many people to go to their work, school, and home. In particular, the main common method inside many cities is to drive the car. Driving a car can be an easy job to reach the destination and load all stuff in a reasonable time. However, deciding to find a parking lot for a car can take a long time using the traditional system that can issue a paper ticket for each customer. The old system cannot guarantee a parking lot for all customers. Also, payment methods are not always available, and many customers struggled to find their car among a numerous number of cars. As a result, this research focuses on providing an online smart parking system in order to save time and budget. This system provides a flexible management system for both parking owner and customers by receiving all request via the online system and it gets an accurate result for all available parking and its location.Keywords: Smart parking system, IoT, tracking system, process model, cost, time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23596753 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory
Authors: A. Ramdane, F.Naceri, S. Ramdane
Abstract:
in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.
Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16406752 Comparison of Frequency Estimation Methods for Reflected Signals in Mobile Platforms
Authors: Kathrin Reinhold
Abstract:
Precise frequency estimation methods for pulseshaped echoes are a prerequisite to determine the relative velocity between sensor and reflector. Signal frequencies are analysed using three different methods: Fourier Transform, Chirp ZTransform and the MUSIC algorithm. Simulations of echoes are performed varying both the noise level and the number of reflecting points. The superposition of echoes with a random initial phase is found to influence the precision of frequency estimation severely for FFT and MUSIC. The standard deviation of the frequency using FFT is larger than for MUSIC. However, MUSIC is more noise-sensitive. The distorting effect of superpositions is less pronounced in experimental data.
Keywords: Frequency estimation, pulse-echo-method, superposition, echoes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11686751 Hybrid Minimal Repair for a Serial System
Authors: Ellysa Nursanti, Anas Ma'ruf, Tota Simatupang, Bermawi P. Iskandar
Abstract:
This study proposes a hybrid minimal repair policy which combines periodic maintenance policy with age-based maintenance policy for a serial production system. Parameters of such policy are defined as and which indicate as hybrid minimal repair time and planned preventive maintenance time respectively . Under this hybrid policy, the system is repaired minimally if it fails during ,. A perfect repair is conducted on the first failure after at any machines. At the same time, we take opportunity to advance the preventive maintenance of other machines simultaneously. If the system is still operating properly up to , then the preventive maintenance is carried out as its predetermined schedule. For a given , we obtain the optimal value which minimizes the expected cost per time unit. Numerical example is presented to illustrate the properties of the optimal solution.Keywords: Hybrid minimal repair, opportunistic maintenance, preventive maintenance, series system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16606750 Critical Velocities for Particle Transport from Experiments and CFD Simulations
Authors: Sajith Sajeev, Brenton McLaury, Siamack Shirazi
Abstract:
In the petroleum industry, solid particles are often present along with the produced fluids. It is imperative to keep particles from accumulating in flow lines. In this study, various experiments are conducted to study sand particle transport, where critical velocity is defined as the average fluid velocity to keep particles continuously moving. Many parameters related to the fluid, particles and pipe affect the transport process. Experimental results are presented varying the particle concentration. Additionally, CFD simulations using a discrete element modeling (DEM) approach are presented to compare with experimental result.Keywords: Particle transport, critical velocity, CFD, DEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12126749 GPS TEC Variation Affected by the Interhemispheric Conjugate Auroral Activity on 21 September 2009
Authors: W. Suparta, M. A. Mohd. Ali, M. S. Jit Singh, B. Yatim, T. Motoba, N. Sato, A. Kadokura, G. Bjornsson
Abstract:
This paper observed the interhemispheric conjugate auroral activity occurred on 21 September 2009. The GPS derived ionospheric total electron content (TEC) during a weak substorm interval recorded at interhemispheric conjugate points at Husafell in Iceland and Syowa in Antarctica is investigated to look at their signatures on the auroral features. Selection of all-sky camera (ASC) images and keogram at Tjörnes and Syowa during the interval 00:47:54 – 00:50:14 UT on 21 September 2009 found that the auroral activity had exerted their influence on the GPS TEC as a consequence of varying interplanetary magnetic field (IMF) By polarity.Keywords: Auroral activity, GPS TEC, Interhemispheric conjugate points, Responses
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12166748 Existence and Stability of Anti-periodic Solutions for an Impulsive Cohen-Grossberg SICNNs on Time Scales
Abstract:
By using the method of coincidence degree and constructing suitable Lyapunov functional, some sufficient conditions are established for the existence and global exponential stability of antiperiodic solutions for a kind of impulsive Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNs) on time scales. An example is given to illustrate our results.
Keywords: Anti-periodic solution, coincidence degree, CGSICNNs, impulse, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13146747 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida
Abstract:
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.
Keywords: C-means clustering, Fuzzy time series, Multi-variate design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22996746 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses
Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas
Abstract:
We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.
Keywords: Transient noise pulses, noise reduction, dynamic time warping, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19466745 LOD Exploitation and Fast Silhouette Detection for Shadow Volumes
Authors: Mustafa S. Fawad, Wang Wencheng, Wu Enhua
Abstract:
Shadows add great amount of realism to a scene and many algorithms exists to generate shadows. Recently, Shadow volumes (SVs) have made great achievements to place a valuable position in the gaming industries. Looking at this, we concentrate on simple but valuable initial partial steps for further optimization in SV generation, i.e.; model simplification and silhouette edge detection and tracking. Shadow volumes (SVs) usually takes time in generating boundary silhouettes of the object and if the object is complex then the generation of edges become much harder and slower in process. The challenge gets stiffer when real time shadow generation and rendering is demanded. We investigated a way to use the real time silhouette edge detection method, which takes the advantage of spatial and temporal coherence, and exploit the level-of-details (LOD) technique for reducing silhouette edges of the model to use the simplified version of the model for shadow generation speeding up the running time. These steps highly reduce the execution time of shadow volume generations in real-time and are easily flexible to any of the recently proposed SV techniques. Our main focus is to exploit the LOD and silhouette edge detection technique, adopting them to further enhance the shadow volume generations for real time rendering.Keywords: LOD, perception, Shadow Volumes, SilhouetteEdge, Spatial and Temporal coherence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16136744 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans
Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke
Abstract:
Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.
Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16736743 Stability Analysis of Fractional Order Systems with Time Delay
Authors: Hong Li, Shou-Ming Zhong, Hou-Biao Li
Abstract:
In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.
Keywords: Fractional order systems, Time delay, Characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36616742 A Model to Determine Atmospheric Stability and its Correlation with CO Concentration
Authors: Kh. Ashrafi, Gh. A. Hoshyaripour
Abstract:
Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions. Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill–Turner stability classification, are the most common parameters and methods. The Pasquill–Turner Method (PTM), which is employed in this study, makes use of observations of wind speed, insolation and the time of day to classify atmospheric stability with distinguishable indices. In this study, a model is presented to determination of atmospheric stability conditions using PTM. As a case study, meteorological data of Mehrabad station in Tehran from 2000 to 2005 is applied to model. Here, three different categories are considered to deduce the pattern of stability conditions. First, the total pattern of stability classification is obtained and results show that atmosphere is 38.77%, 27.26%, 33.97%, at stable, neutral and unstable condition, respectively. It is also observed that days are mostly unstable (66.50%) while nights are mostly stable (72.55%). Second, monthly and seasonal patterns are derived and results indicate that relative frequency of stable conditions decrease during January to June and increase during June to December, while results for unstable conditions are exactly in opposite manner. Autumn is the most stable season with relative frequency of 50.69% for stable condition, whilst, it is 42.79%, 34.38% and 27.08% for winter, summer and spring, respectively. Hourly stability pattern is the third category that points out that unstable condition is dominant from approximately 03-15 GTM and 04-12 GTM for warm and cold seasons, respectively. Finally, correlation between atmospheric stability and CO concentration is achieved.Keywords: Atmospheric stability, Pasquill-Turner classification, convective turbulence, mechanical turbulence, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64536741 Investigation of Adaptable Winglets for Improved UAV Control and Performance
Abstract:
An investigation of adaptable winglets for morphing aircraft control and performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centred on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance controllability and the aerodynamic efficiency of a small unmanned aerial vehicle. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist, swept, and dihedral angle considered. The results from this work indicate that if adaptable winglets were employed on small scale UAV’s improvements in both aircraft control and performance could be achieved.
Keywords: Aircraft, rolling, wing, winglet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29716740 Collaboration versus Cooperation: Grassroots Activism in Divided Cities and Communication Networks
Authors: R. Barbour
Abstract:
Peace-building organisations act as a network of information for communities. Through fieldwork, it was highlighted that grassroots organisations and activists may cooperate with each other in their actions of peace-building; however, they would not collaborate. Within two divided societies; Nicosia in Cyprus and Jerusalem in Israel, there is a distinction made by organisations and activists with regards to activities being more ‘co-operative’ than ‘collaborative’. This theme became apparent when having informal conversations and semi-structured interviews with various members of the activist communities. This idea needs further exploration as these distinctions could impact upon the efficiency of peacebuilding activities within divided societies. Civil societies within divided landscapes, both physically and socially, play an important role in conflict resolution. How organisations and activists interact with each other has the possibility to be very influential with regards to peacebuilding activities. Working together sets a positive example for divided communities. Cooperation may be considered a primary level of interaction between CSOs. Therefore, at the beginning of a working relationship, organisations cooperate over basic agendas, parallel power structures and focus, which led to the same objective. Over time, in some instances, due to varying factors such as funding, more trust and understanding within the relationship, it could be seen that processes progressed to more collaborative ways. It is evident to see that NGOs and activist groups are highly independent and focus on their own agendas before coming together over shared issues. At this time, there appears to be more collaboration in Nicosia among CSOs and activists than Jerusalem. The aims and objectives of agendas also influence how organisations work together. In recent years, Nicosia, and Cyprus in general, have perhaps changed their focus from peace-building initiatives to more environmental issues which have become new-age reconciliation topics. Civil society does not automatically indicate like-minded organisations however solidarity within social groups can create ties that bring people and resources together. In unequal societies, such as those in Nicosia and Jerusalem, it is these ties that cut across groups and are essential for social cohesion. Societies are a collection of social groups; individuals who have come together over common beliefs. These groups in turn shape the identities and determine the values and structures within societies. At many different levels and stages, social groups work together through cooperation and collaboration. These structures in turn have the capabilities to open up networks to less powerful or excluded groups, with the aim to produce social cohesion which may contribute social stability and economic welfare over any extended period.
Keywords: Collaboration, cooperation, grassroots activism, networks of communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9226739 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10986738 The Impact of Community Settlement on Leisure Time Use and Body Composition in Determining Physical Lifestyles among Women
Authors: Mawarni Mohamed, Sharifah Shahira A. Hamid
Abstract:
Leisure time is an important component to offset the sedentary lifestyle of the people. Women tend to benefit from leisure activities not only to reduce stress but also to provide opportunities for well-being and self-satisfaction. This study was conducted to investigate body composition and leisure time use among women in Selangor from the influences of community settlement. A total of 419 women aged 18-65 years were selected to participate in this study. Descriptive statistics, t-test and ANOVA were used to analyze the level of physical activity and the relationship between leisure-time use and body composition were made to analyze the physical lifestyles. The results showed that women with normal body composition seem to be involved in more passive activities than women with less weight gain and obesity. Thus, the study recommended that the government and other health and recreational agencies should develop more places and activities suitable for leisure preference for women in their community settlement so they become more interested to engage in more active recreational and physical activities.Keywords: Body composition, community settlement, leisure time, lifestyles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9446737 Periodicity for a Food Chain Model with Functional Responses on Time Scales
Authors: Kejun Zhuang
Abstract:
With the help of coincidence degree theory, sufficient conditions for existence of periodic solutions for a food chain model with functional responses on time scales are established.Keywords: time scales, food chain model, coincidence degree, periodic solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17126736 FPGA-based Systems for Evolvable Hardware
Authors: Cyrille Lambert, Tatiana Kalganova, Emanuele Stomeo
Abstract:
Since 1992, year where Hugo de Garis has published the first paper on Evolvable Hardware (EHW), a period of intense creativity has followed. It has been actively researched, developed and applied to various problems. Different approaches have been proposed that created three main classifications: extrinsic, mixtrinsic and intrinsic EHW. Each of these solutions has a real interest. Nevertheless, although the extrinsic evolution generates some excellent results, the intrinsic systems are not so advanced. This paper suggests 3 possible solutions to implement the run-time configuration intrinsic EHW system: FPGA-based Run-Time Configuration system, JBits-based Run-Time Configuration system and Multi-board functional-level Run-Time Configuration system. The main characteristic of the proposed architectures is that they are implemented on Field Programmable Gate Array. A comparison of proposed solutions demonstrates that multi-board functional-level run-time configuration is superior in terms of scalability, flexibility and the implementation easiness.Keywords: Evolvable hardware, evolutionary computation, FPGA systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24516735 MHD Unsteady Free Convection of Heat and Mass Transfer Flow through Porous Medium with Time Dependent Suction and Constant Heat Source/Sink
Authors: Praveen Saraswat, Rudraman Singh
Abstract:
In this paper, we have investigated the free convection MHD flow due to heat and mass transfer through porous medium bounded by an infinite vertical non-conducting porous plate with time dependent suction under the influence of uniform transverse magnetic field of strength H0. When Temperature (T) and Concentration (C) at the plate is oscillatory with time about a constant non-zero mean. The velocity distribution, the temperature distribution, co-efficient of skin friction and role of heat transfer is investigated. Here the partial differential equations are involved. Exact solution is not possible so approximate solution is obtained and various graphs are plotted.
Keywords: Time Dependent Suction, Convection, MHD, Porous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19086734 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.
Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12816733 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves
Authors: Hanifeh Imanian, Morteza Kolahdoozan
Abstract:
The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.Keywords: Dispersion, marine environment, mathematical-statistical relationship, oil spill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11466732 Evaluation of the Acoustic Performance of Classrooms in Algerian Teaching Schools
Authors: Bouttout Abdelouahab, Amara Mohamed, Djakabe Saad, Remram Youcef
Abstract:
This paper presents the results of an evaluation of acoustic comfort such as background noise and reverberation time in teaching rooms in Height National School of Civil Engineering, Algeria. Four teaching rooms are evaluated: conference room, two classroom and amphitheatre. The acoustic quality of the classrooms has been analyzed based on measurements of sound pressure level inside room and reverberations time. The measurement results show that impulse decays dependent on the position of the microphone inside room and the background noise is with agreement of National Official Journal of Algeria published in July 1993. Therefore there exists a discrepancy between the obtained reverberation time value and recommended reverberation time in some classrooms. Three methods have been proposed to reduce the reverberation time values in such room. We developed a program with FORTRAN 6.0 language based on the absorption acoustic values of the Technical Document Regulation (DTR C3.1.1). The important results of this paper can be used to regulate the construction and execute the acoustic rehabilitations of teaching room in Algeria, especially the classrooms of the pupils in primary and secondary schools.
Keywords: Room acoustic, reverberation time, background noise, absorptions materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26966731 Performance Evaluation of Compression Algorithms for Developing and Testing Industrial Imaging Systems
Authors: Daniel F. Garcia, Julio Molleda, Francisco Gonzalez, Ruben Usamentiaga
Abstract:
The development of many measurement and inspection systems of products based on real-time image processing can not be carried out totally in a laboratory due to the size or the temperature of the manufactured products. Those systems must be developed in successive phases. Firstly, the system is installed in the production line with only an operational service to acquire images of the products and other complementary signals. Next, a recording service of the image and signals must be developed and integrated in the system. Only after a large set of images of products is available, the development of the real-time image processing algorithms for measurement or inspection of the products can be accomplished under realistic conditions. Finally, the recording service is turned off or eliminated and the system operates only with the real-time services for the acquisition and processing of the images. This article presents a systematic performance evaluation of the image compression algorithms currently available to implement a real-time recording service. The results allow establishing a trade off between the reduction or compression of the image size and the CPU time required to get that compression level.Keywords: Lossless image compression, codec performanceevaluation, grayscale codec comparison, real-time image recording.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14196730 The Loess Regression Relationship Between Age and BMI for both Sydney World Masters Games Athletes and the Australian National Population
Authors: Joe Walsh, Mike Climstein, Ian Timothy Heazlewood, Stephen Burke, Jyrki Kettunen, Kent Adams, Mark DeBeliso
Abstract:
Thousands of masters athletes participate quadrennially in the World Masters Games (WMG), yet this cohort of athletes remains proportionately under-investigated. Due to a growing global obesity pandemic in context of benefits of physical activity across the lifespan, the BMI trends for this unique population was of particular interest. The nexus between health, physical activity and aging is complex and has raised much interest in recent times due to the realization that a multifaceted approach is necessary in order to counteract the obesity pandemic. By investigating age based trends within a population adhering to competitive sport at older ages, further insight might be gleaned to assist in understanding one of many factors influencing this relationship.BMI was derived using data gathered on a total of 6,071 masters athletes (51.9% male, 48.1% female) aged 25 to 91 years ( =51.5, s =±9.7), competing at the Sydney World Masters Games (2009). Using linear and loess regression it was demonstrated that the usual tendency for prevalence of higher BMI increasing with age was reversed in the sample. This trend in reversal was repeated for both male and female only sub-sets of the sample participants, indicating the possibility of improved prevalence of BMI with increasing age for both the sample as a whole and these individual sub-groups.This evidence of improved classification in one index of health (reduced BMI) for masters athletes (when compared to the general population) implies there are either improved levels of this index of health with aging due to adherence to sport or possibly the reduced BMI is advantageous and contributes to this cohort adhering (or being attracted) to masters sport at older ages.Keywords: Aging, masters athlete, Quetelet Index, sport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17126729 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan Lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.
Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20636728 Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor
Authors: Samir Brahim Belhaouari
Abstract:
By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.Keywords: Pattern recognition, Time series, k-Nearest Neighbor, k-means cluster, Gaussian Mixture Model, Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965