

Abstract—A real-time tracking system was built to track

performers on an interactive stage. Using an ordinary, up to date,
desktop workstation, the performers’ silhouette was segmented from
the background and parameterized by calculating the normalized
central image moments. In the stage system, the silhouette moments
were then sent to a parallel workstation, which used them to generate
corresponding 3D virtual geometry and projected the generated
graphic back onto the stage.

Keywords—image moment, interactive stage, real-time,
silhouette.

I. INTRODUCTION

RTISTS are interested in the integration the physical and
virtual spaces in an interactive stage [1]. For example, in

the Spawn project [2], a complex 3D geometry, which was
composed of four circles stretching a spline-based membrane
between them, deformed according to the performers’
movements on stage. The 3D geometry was then projected in
real-time onto a mobile screen back on the stage. The
performers on stage and the visualization of the virtual
geometry on the mobile screen embody the interaction
between the physical and virtual spaces.

Fig 1 Pictures in the first row show the interactive stage and pictures in the
second row show the deformable virtual geometry.

Manuscript received March 15, 2005
S. Hu. Author is with the Computer Science Department, University

College London, Gower Street, London WC1E 6BT, UK (e-mail:
s.hu@cs.ucl.ac.uk).

J. Mortensen. Author is with the Computer Science Department,
University College London, Gower Street, London WC1E 6BT, UK (e-mail:
j.mortensen@cs.ucl.ac.uk).

B. F. Buxton. Author is with the Computer Science Department,
University College London, Gower Street, London WC1E 6BT, UK (e-mail:
b.buxton@cs.ucl.ac.uk).

To enable the physical space and the virtual space merge in
order to affect each other in such an interaction, in Spawn, we
needed to coordinate visualization of the virtual geometry with
the performers’ movements. This required live tracking of the
performers’ movements, together with on-line generation of
the corresponding 3D graphics, both running in real-time,
continuously for up to 20-30 minutes.

In this paper we will introduce the tracking system that we
built for the interactive stage in the Spawn project. The system
captured the stage and the performers using an ordinary digital
camcorder, which was placed besides the stage. The
performers’ silhouette (since the two dancers kept body
contact during the whole performance, we regarded their
connected silhouettes as a single one) was then segmented
from the background. The silhouette’s normalized central
moments, which are invariant to image rotation and
approximately invariant to changes in viewing distance, were
then calculated to provide a low detail representation of the
performers’ body outline. In Spawn, the silhouette moments,
formatted using the Extensible Markup Language (XML) [3],
were then transmitted to a parallel workstation as input to
generate the corresponding virtual geometry and finally
projected back onto the screen on stage. The whole system,
including the tracking system, has been implemented in real-
time for real data on ordinary workstations (DELL dual P4
xeon 2.8ghz with 1GB RAM and a Geforce 6800) and shown
to work for data obtained in the laboratory, an office
environment, or a dance studio.

II. SILHOUETTE SEGMENTATION

In order to capture the performers’ movements on stage, we
need to segment the bodies’ silhouette from the background.
As a low computational cost algorithm is essential to the real-
time system, we used a segmentation method based on
background differencing [4] [5]

A. Learning the Background
During a training process when there were no performers on

stage, the system learned what the background was on average
and every background pixel’s variation owing to illumination
or other small changes. If there were N frames of background
captured during the training process, then for each pixel),(yx

we calculated the sum of the pixel values,),(yxSP , and their

sum of squares,),(yxSSP , from which the mean pixel value,

A Real-Time Tracking System Developed for an
Interactive Stage Performance

S. Hu, J. Mortensen and Bernard F. Buxton

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1457International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

19
3.

pd
f

NyxSPyxM /),(),(= , and the standard deviation),(yxσ
were calculated.

B. Extract the Foreground
We assume that pixels of the background may change their

intensities independently, according to a normal distribution,
for example owing to noise or other random effects that we do
not wish to model in detail. For every pixel in a grey scale
image, we could then use the standard deviation),(yxσ of
that pixel obtained from the learning phase to judge whether
the pixel belongs to the foreground or not. Thus if

()),(),(),(yxcyxIyxMabs σ≥− , (1)

where),(yxI is the current intensity of pixel),(yx and c is
a constant value that would typically be set approximately to 3,
we can say that the pixel located at),(yx belongs to a
foreground object. For colour images, as captured in the
interactive stage application, equation (1) was applied to each
colour channel (red, green, blue), according to the means and
standard deviations as calculated for each channel, as in [4]. In
our applications, since we assumed an independent distribution
on each pixel, it was not necessary to use a mixture model.
However, in order to reduce the number of false positive
pixels, we adopted the conservative strategy that only pixels
fulfilling (1) on every colour channel were regarded as
belonging to the performers’ silhouette. This approach has
been tested on data obtained in the laboratory and an office
environment as shown in Fig 2.

(a) (b)

(c) (d)
Fig 2 (a) shows the mean of the background learnt from 150 training images.
(b) shows the standard deviation of the background pixels. (c) shows a person
walking into the scene, and (d) shows the segmented silhouette of the person
obtained by using the method described in section II with c set to a high
value of 5, in this case to avoid false positive pixels on the door frames.

C. Shadow Elimination
For the method discussed in the previous section, we often

mislabel pixels in the shadow of a performer as belonging to

the foreground. Because the shadows are normally connected
to the performers’ bodies and may cover an area larger than
the object itself, it is important to eliminate such shadows, yet
difficult to do so by conventional methods such as
morphological filtering or by selecting the largest area or
longest contour. To tackle this problem, we introduced a
method that is based on chromaticity information as follows in
a manner similar to, but simpler than that of Bowden [6].

Chromaticity is a representation of colour that is independent
of intensity. If we assume the shadows are caused by part of
the background receiving less light when the object moved in
the scene, then we may assume that each background pixel has
similar chromaticity properties before and after being covered
by a shadow. For pixels covered by the object, however, their
chromaticity properties will change significantly if the object’s
colour is different from that of the part of the background that
is covered.

For the pixel),(yx , chromaticity can be obtained by colour
normalization, with for example, for the red channel:

),;(),;(),;(
),;(

),;(
yxbIyxgIyxrI

yxrI
yxrC

++
= , (2)

with similar equations for the green and blue channels, where
()),;(),,;(),,;(),(yxbCyxgCyxrCyxC = stands for the

chromaticity of pixel),(yx and),;(yxrI ,),;(yxgI , and
),;(yxbI are the intensities of the red, green and blue colour

channels respectively. Then, for pixel),(yx , the difference
),(yxC∆ between its chromaticity),(yxC ′ when given a new

image frame and that),(yxC learnt during the background
training process can be measured by the Mahalanobis distance

),(yxd defined formally as follows:

),(),(),(),(1 yxCyxSyxCyxd T ∆∆= − , (3)

where),(yxS is the chromaticity covariance matrix of pixel
),(yx , also obtained during the background training process.

Then, if for a new frame, for each pixel, the distance
),(yxd is bigger than a constant (again in the range 3-5), the

pixel will be regarded as belonging to the foreground,
otherwise it will be regarded as belonging to the background .

Since, in the RGB space,),(yxC lies on the 2D

chromaticity plane, the 33× matrix),(yxS will be singular,

so the),(1 yxS − in equation (3) must be treated as a
pseudoinverse. This may conveniently be computed from the
principal components of the covariance matrix),(yxS and the

distance),(yxd calculated in practice as follows:

�
=

∆∆
=

2

1),;(
),(),;(),;(),(

),(
i

TT

yxi
yxCyxipyxipyxC

yxd
λ

, (4)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1458International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

19
3.

pd
f

where),;(yxiλ is the ith biggest eigenvalue of),(yxS and

),;(yxip is the corresponding eigenvector.

(a) (b)

(c)

Fig 3 100 images of the wall (light yellow) were used to learn the
background. (a) shows objects with different colours (the hand and the
marker pen) moved into the scene. (b) shows the Mahalanobis distance for
each pixel calculated using equation (4) with all the distances multiplied by 5
to make the image visible. It can be seen that the distances in the shadow
region are smaller than those in the area covered by the objects. (c) shows the
histogram of Mahalanobis distances.

Fig 3 above shows the Mahalanobis distances calculated for
an example image. It can be seen from the histogram that most
of the pixels that are not covered by the objects are at zero or
small Mahalanobis distances from the background, whilst
pixels covered by the objects are further from the background
at larger distances. More results are shown in the
Implementation section.

D. Computing the Silhouette Moments
After the performers’ silhouette were obtained, we calculated
the silhouette’s normalized central moments, which may be
defined over the R . By definition, the zero order normalised
moment is one and the first order central moments vanish.

Calculating the moments over the R would require a
significant amount of computation proportional to the number
of pixels within R . However, according to Green’s theorem
[7], instead of computing moments over the region R , we can
compute the moments along the contour of R and hence
involve fewer pixels and save computational effort.

III. IMPLEMENTATION

The tracking system consisted of one workstation running
under the Windows XP operating system and one ordinary
digital camcorder, which was mounted on a tripod about 1.2
meters high. The camcorder and the workstation were
connected with an IEEE 1394/FireWire cable. The workstation

of the tracking system was then connected, via an Ethernet
link, to a parallel similar workstation which was used to
generate the virtual graphics.

A. System architecture

Fig 4 Architecture of the tracking system

The tracking system’s software program, which controlled
the camcorder and performed silhouette moment calculation,
was developed under C++ and compiled using Microsoft
Visual Studio .NET 2003.

To make the capture easy and efficient under a Windows
XP environment, we used Microsoft DirectShow, which
provides a set of low-level application programming
interfaces (APIs) under Microsoft DirectX, with which to build
the system as illustrated schematically in Fig 4.

Five different filters from DirectShow were used in the
tracking pipeline. The first, at the top left in Fig 4, was a
Windows Driver Model (WDM) video capture filter. This
filter was the interface between the capture device (a digital
camcorder) and the program. It took the input signal from the
camcorder at 25 frames per second, split the signal into an
audio stream and a video stream and, in the system developed
for Spawn, passed the video stream on to the next filter. In our
system, the audio was not used.

Without any additional data copying, the second filter
(Smart Tee) split the video stream into a preview stream and a
capture stream. However, to avoid imposing an unnecessary
burden on the system, we didn’t record or display the preview
stream except for development purposes and, in a
performance, only the capture stream was passed down the
pipeline.

The capture stream from the Smart Tee filter was still in
digital video (DV) format, which is not convenient for
processing. A DV Video Decoder was thus inserted to convert
the capture stream in to an uncompressed video format so that
each frame could be processed as ordinary RGB color
imagery.

After inserting a Sample Grabber filter as show in the Fig 4,
we had two options for retrieval of captured frames for
processing. One was to buffer each frame the Sample Grabber
filter received; the other was to use a callback function.
Invoking a callback function may cause deadlocks, which are
unacceptable during a live performance. Since this may
happen whenever the computation cost rises significantly, for
example, on frames when the performers move too close to the
camera and covers most of the camera’s view, we chose to use

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1459International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

19
3.

pd
f

the buffering approach. Each frame we buffered was processed
as discussed in section II and the silhouette moments were sent
to the parallel workstation before the next buffer was retrieved.
We used a Video Render filter to end the processing pipe and
to monitor the captured frames.

B. Silhouette Segmentation, Shadow Elimination and
Moment Calculation
For the frame buffers obtained from the Sample Grabber

filter, we employed an open source library called OpenCV [8]
to perform the silhouette segmentation and the moment
calculations. The OpenCV library provided efficient and quick
access to each pixel in the frame, which helped us identify the
pixels that exceed the allowed variance),(yxcσ as in (1). We
labelled these pixels as possible foreground pixels. Binary
images were created by setting the foreground pixels to 1 and
others pixels to 0. A median filter with a 5x5 pixel mask was
applied to remove salt and pepper noise by using the OpenCV
function “cvSmooth”.

The shadow elimination method defined by equation (4) was
then applied to every pixel),(yx which was still labeled after
the smoothing as 1 in the binary images. This enabled us to
remove most shadow pixels that were mislabelled as
foreground in the binary image.

Then, by using functions like “CvContourScanner” of
OpenCV, we obtained the contours of the foreground pixel
regions. Usually, we obtained more than one contour at this
stage because some noise may pass the median filter and the
shadow elimination processes. We solved this problem by
checking each contour’s length and keeping only the longest
contour, which it is reasonable to assume defines the outline of
the performers’ bodies. Finally, the silhouette moments were
calculated by using the function “cvMoments”, which takes the
contour as input. Note that although we sent silhouette
moments to the parallel workstation, there is no reason why, in
principle, we can not send the contour together with the
moments as input to generate the virtual geometry.

Some experiments on this tracking system were carried out
in the laboratory as shown in Fig 5. It can be seen that the
system gave good results except when we used the yellow
marker pen, which has a similar colour to the yellow
background and, as expected, made the shadow elimination
process fail by mislabelling object pixels as background.

IV. CONCLUSION

In this paper we have introduced a real-time tracking
system, which was built on an ordinary workstation running
under the Windows XP operating system. The tracking system
was used to track a moving object before a steady background,
to extract its silhouette, and to send normalised central
moments computed from the silhouette to another workstation
as input for generating the virtual geometry. The whole system
has been tested in a laboratory and in an office environment
and used during online during a live, stage performance.
Satisfactory results were obtained throughout, and the system

ran continuously in real-time without trouble throughout
several 20-30 minute dance routines.

Fig 5 The first column of pictures on the left shows the test frame grabbed
from the Sample Grabber filter, the second column in the middle shows the
segmentation results. All pixels that failed to fulfill equation (1) were set as 0
(black in image). It can be seen in the second column that many shadow
pixels passed equation (1). After shadow elimination, the final contours are
shown in the third column on the right. It can be seen that the tracking system
gives good result on the blue maker pen (top row), green marker pen (middle
row) and the hand while mislabelled some pixels of the yellow marker pen
(bottom row).

ACKNOWLEDGMENT

The authors would like to thank Mette Thomsen and Carol
Brown for suggesting the project to them, Chris Parker asnd
Mette Thomsen for their help and support, and the dancers of
Carol Brown Dancers for their performances.

REFERENCES

[1] R. Bowden, P. KaewTraKulPong and M. Lewin, Jeremiah: The Face of
Computer Vision, Smart Graphics'02. Conf. Proc. Series, page 124-128,
June 2002, Hawthorn NY USA,

[2] Mette Thomsen, Spawn project, [Online] Available at
http://www.cs.ucl.ac.uk/research/vr/Projects/VLF/Media/escape/spawn.
html, (accessed 03 March, 2005).

[3] Extensible Markup Language (XML), [Online] Available at
http://www.w3.org/XML/, (accessed 10 March, 2005)

[4] A. Elgammal, D Harwood and L. Davis, Non-Parametric Model for
Background Subtraction, ECCV2000, volume 2, page 751–767, 2000.

[5] C.R.Wern, A. Azarbayejani, T. Darrell and A. P. Pentland, Pfinder:
Real-time tracking of human body, IEEE Trans on Pattern Analysis and
Machine Intelligence, 1997.

[6] P. AaewTraKulPong and R. Bowden, An Improved Adaptive
Background Mixture Model for Real-time Tracking with Shadow
Detection, In: Proc. AVBS’01, 2001.

[7] C. H. Edwards, Jr., and D. E. Penny, Calculus and analytic geometry,
3rd Edition, page 859-866, 1982, Prentic Hall.

[8] The Open Computer Vision Library, [Online] Available at
http://sourceforge.net/projects/opencvlibrary/, (accessed 10 March,
2005)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1460International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

19
3.

pd
f

