Search results for: Multiobjective evolutionary optimization
1150 Optimization of Growth of Rhodobacter Sphaeroides Using Mixed Volatile Fatty Acidsby Response Surface Methodology
Authors: R.Sangeetha, T.Karunanithi
Abstract:
A combination of photosynthetic bacteria along with anaerobic acidogenic bacteria is an ideal option for efficient hydrogen production. In the present study, the optimum concentration of substrates for the growth of Rhodobacter sphaeroides was found by response surface methodology. The optimum combination of three individual fatty acids was determined by Box Behnken design. Increase of volatile fatty acid concentration decreased the growth. Combination of sodium acetate and sodium propionate was most significant for the growth of the organism. The results showed that a maximum biomass concentration of 0.916 g/l was obtained when the concentrations of acetate, propionate and butyrate were 0.73g/l,0.99g/l and 0.799g/l, respectively. The growth was studied under an optimum concentration of volatile fatty acids and at a light intensity of 3000 lux, initial pH of 7 and a temperature of 35°C.The maximum biomass concentration of 0.92g/l was obtained which verified the practicability of this optimization.Keywords: Biohydrogen, Response Surface Methodology, Rhodobacter sphaeroides, Volatile fatty acid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21441149 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models
Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo de Magalhães
Abstract:
This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.
Keywords: Rainfall-runoff models, optimization procedure, automatic parameter calibration, hyperbolic smoothing method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4091148 A Model of a Heat Radiation on a Mould Surface in the Car Industry
Abstract:
This article is focused on the calculation of heat radiation intensity and its optimization on an aluminum mould surface. The inside of the mould is sprinkled with a special powder and its outside is heated by infra heaters located above the mould surface, up to a temperature of 250°C. By this way artificial leathers in the car industry are produced (e. g. the artificial leather on a car dashboard). A mathematical model of heat radiation of infra heaters on a mould surface is described in this paper. This model allows us to calculate a heat-intensity radiation on the mould surface for the concrete location of infra heaters above the mould surface. It is necessary to ensure approximately the same heat intensity radiation on the mould surface by finding a suitable location for the infra heaters, and in this way the same material structure and color of artificial leather. In the model we have used a genetic algorithm to optimize the radiation intensity on the mould surface. Experimental measured values for the heat radiation intensity by a sensor in the surroundings of an infra heater are used for the calculation procedures. A computational procedure was programmed in language Matlab.Keywords: Genetic algorithm, mathematical model of heat radiation, optimization of radiation intensity, software implementation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14031147 Opportunities and Optimization of the Our Eyes Initiative as the Strategy for Counter-Terrorism in ASEAN
Authors: Chastiti Mediafira Wulolo, Tri Legionosuko, Suhirwan, Yusuf
Abstract:
Terrorism and radicalization have become a common threat to every nation in this world. As a part of the asymmetric warfare threat, terrorism and radicalization need a complex strategy as the problem solver. One such way is by collaborating with the international community. The Our Eyes Initiative (OEI), for example, is a cooperation pact in the field of intelligence information exchanges related to terrorism and radicalization initiated by the Indonesian Ministry of Defence. The pact has been signed by Indonesia, Philippines, Malaysia, Brunei Darussalam, Thailand, and Singapore. This cooperation mostly engages military acts as a central role, but it still requires the involvement of various parties such as the police, intelligence agencies and other government institutions. This paper will use a qualitative content analysis method to address the opportunity and enhance the optimization of OEI. As the result, it will explain how OEI takes the opportunities as the strategy for counter-terrorism by building it up as the regional cooperation, building the legitimacy of government and creating the legal framework of the information sharing system.
Keywords: Our Eyes Initiative, terrorism, counter-terrorism, ASEAN, cooperation, strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661146 Modified PSO Based Optimal Control for Maximizing Benefits of Distributed Generation System
Authors: Priyanka Sen, Kaibalya Prasad Panda, Soumyakanta Samantaray, Sreyasee Rout, Bishnupriya Biswal
Abstract:
Deregulation in the power system industry and the invention of new technologies for producing electrical energy has led to innovations in power system planning. Distributed generation (DG) is one of the most attractive technologies that bring different kinds of advantages to a lot of entities, engaged in power systems. In this paper, a model for considering DGs in the power system planning problem is presented. Dynamic power system planning for reduction of maintenance and operational cost is presented in this paper. In addition to that, a modified particle swarm optimization (PSO) is used to find the optimal topology solution. Voltage Profile Improvement Index (VPII) and Line Loss Reduction Index (LLRI) are taken as benefit index of employing DG. The effectiveness of this method is demonstrated through examination of IEEE 30 bus test system.
Keywords: Distributed generation, line loss reduction index, particle swarm optimization, power system, voltage profile improvement index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9131145 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081144 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16381143 Efficient Feature-Based Registration for CT-M R Images Based on NSCT and PSO
Authors: Nemir Al-Azzawi, Harsa A. Mat Sakim, Wan Ahmed K. Wan Abdullah, Yasmin Mohd Yacob
Abstract:
Feature-based registration is an effective technique for clinical use, because it can greatly reduce computational costs. However, this technique, which estimates the transformation by using feature points extracted from two images, may cause misalignments. To handle with this limitation, we propose to extract the salient edges and extracted control points (CP) of medical images by using efficiency of multiresolution representation of data nonsubsampled contourlet transform (NSCT) that finds the best feature points. The MR images were first decomposed using the NSCT, and then Edge and CP were extracted from bandpass directional subband of NSCT coefficients and some proposed rules. After edge and CP extraction, mutual information was adopted for the registration of feature points and translation parameters are calculated by using particle swarm optimization (PSO). The experimental results showed that the proposed method produces totally accurate performance for registration medical CT-MR images.
Keywords: Feature-based registration, mutual information, nonsubsampled contourlet transform, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701142 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing
Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta
Abstract:
Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14241141 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate
Authors: Andrey A. Chernousov, Ben Y. B. Chan
Abstract:
The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the EnergyPlus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.
Keywords: Thermal performance, phase change material, energy efficiency, PCM optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22281140 Optimization of Fuel Consumption of a Bus used in City Line with Regulation of Driving Characteristics
Authors: Muammer Ozkan, Orkun Ozener, Irfan Yavasliol
Abstract:
The fuel cost of the motor vehicle operating on its common route is an important part of the operating cost. Therefore, the importance of the fuel saving is increasing day by day. One of the parameters which improve fuel saving is the regulation of driving characteristics. The number and duration of stop is increased by the heavy traffic load. It is possible to improve the fuel saving with regulation of traffic flow and driving characteristics. The researches show that the regulation of the traffic flow decreases fuel consumption, but it is not enough to improve fuel saving without the regulation of driving characteristics. This study analyses the fuel consumption of two trips of city bus operating on its common route and determines the effect of traffic density and driving characteristics on fuel consumption. Finally it offers some suggestions about regulation of driving characteristics to improve the fuel saving. Fuel saving is determined according to the results obtained from simulation program. When experimental and simulation results are compared, it has been found that the fuel saving was reached up the to 40 percent ratios.Keywords: Fuel Consumption, Fuel Economy, Driving Characteristics, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381139 Multi-Objective Optimization for Performance-based Seismic Retrofit using Connection Upgrade
Authors: Dong-Chul Lee, Byung-Kwan Oh, Se-Woon Choi, Hyo-Sun Park
Abstract:
The unanticipated brittle fracture of connection of the steel moment resisting frame (SMRF) occurred in 1994 the Northridge earthquake. Since then, the researches for the vulnerability of connection of the existing SMRF and for rehabilitation of those buildings were conducted. This paper suggests performance-based optimal seismic retrofit technique using connection upgrade. For optimal design, a multi-objective genetic algorithm(NSGA-II) is used. One of the two objective functions is to minimize initial cost and another objective function is to minimize lifetime seismic damages cost. The optimal algorithm proposed in this paper is performed satisfying specified performance objective based on FEMA 356. The nonlinear static analysis is performed for structural seismic performance evaluation. A numerical example of SAC benchmark SMRF is provided using the performance-based optimal seismic retrofit technique proposed in this paperKeywords: connection upgrade, performace-based seismicdesign, seismic retrofit, multi-objective optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371138 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game
Authors: Jain-Shing Liu
Abstract:
In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16941137 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm
Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab
Abstract:
The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.
Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23381136 Optimization of Supersonic Ejector via Sequence-Adapted Micro-Genetic Algorithm
Authors: Kolar Jan, Dvorak Vaclav
Abstract:
In this study, an optimization of supersonic air-to-air ejector is carried out by a recently developed single-objective genetic algorithm based on adaption of sequence of individuals. Adaptation of sequence is based on Shape-based distance of individuals and embedded micro-genetic algorithm. The optimal sequence found defines the succession of CFD-aimed objective calculation within each generation of regular micro-genetic algorithm. A spring-based deformation mutates the computational grid starting the initial individualvia adapted population in the optimized sequence. Selection of a generation initial individual is knowledge-based. A direct comparison of the newly defined and standard micro-genetic algorithm is carried out for supersonic air-to-air ejector. The only objective is to minimize the loose of total stagnation pressure in the ejector. The result is that sequence-adopted micro-genetic algorithm can provide comparative results to standard algorithm but in significantly lower number of overall CFD iteration steps.
Keywords: Grid deformation, Micro-genetic algorithm, shapebased sequence, supersonic ejector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15641135 Optimization of R507A-R23 Cascade Refrigeration System using Genetic Algorithm
Authors: A. D. Parekh, P. R. Tailor, H.R Jivanramajiwala
Abstract:
The present work deals with optimization of cascade refrigeration system using eco friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% by wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable. Optimization of R507AR23 cascade refrigeration system performance parameters such as minimum work required, refrigeration effect, coefficient of performance and exergetic efficiency was carried out in terms of eight operating parameters- combinations using Genetic Algorithm tool. The eight operating parameters include (1) low side evaporator temperature (2) high side condenser temperature (3) temperature difference in the cascade heat exchanger (4) low side condenser temperature (5) low side degree of subcooling (6) high side degree of subcooling (7) low side degree of superheating (8) high side degree of superheating. Results show that for minimum work system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and low degree of subcooling and superheating in both side. For maximum refrigeration effect system should operate at high temperature in low side evaporator, high temperature in high side condenser, high temperature difference in cascade condenser, low temperature in low side condenser and higher degree of subcooling in LT and HT side. For maximum coefficient of performance and exergetic efficiency, system should operate at high temperature in low side evaporator, low temperature in high side condenser, low temperature difference in cascade condenser, high temperature in low side condenser and higher degree of subcooling and superheating in low side of the system.
Keywords: Cascade refrigeration system, Genetic Algorithm, R507A, R23,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21341134 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming
Authors: Abbas Al-Refaie
Abstract:
This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.
Keywords: Fuzzy goal programming, control charts, process capability, tablet optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10041133 Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction
Authors: H. Shayeghi, M. Mahdavi, A. Kazemi
Abstract:
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, transmission expansion planning considering network adequacy restriction has not been investigated. Thus, in this paper, STNEP problem is being studied considering network adequacy restriction using discrete particle swarm optimization (DPSO) algorithm. The goal of this paper is obtaining a configuration for network expansion with lowest expansion cost and a specific adequacy. The proposed idea has been tested on the Garvers network and compared with the decimal codification genetic algorithm (DCGA). The results show that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is more than DCGA approach.Keywords: DPSO algorithm, Adequacy restriction, STNEP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491132 Optimization of Machining Parametric Study on Electrical Discharge Machining
Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel
Abstract:
Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.
Keywords: Material removal rate, TWR, OC, DOE, ANOVA, MINITAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8331131 Damping Power System Oscillations Improvement by FACTS Devices: A Comparison between SSSC and STATCOM
Authors: J. Barati, A. Saeedian, S. S. Mortazavi
Abstract:
The main objective of this paper is a comparative investigate in enhancement of damping power system oscillation via coordinated design of the power system stabilizer (PSS) and static synchronous series compensator (SSSC) and static synchronous compensator (STATCOM). The design problem of FACTS-based stabilizers is formulated as a GA based optimization problem. In this paper eigenvalue analysis method is used on small signal stability of single machine infinite bus (SMIB) system installed with SSSC and STATCOM. The generator is equipped with a PSS. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. This aim is to enhance both rotor angle and power system stability. The eigenvalue analysis and non-linear simulation results are presented to show the effects of these FACTS-based stabilizers and reveal that SSSC exhibits the best effectiveness on damping power system oscillation.Keywords: Power system stability, PSS, SSSC, STATCOM, Coordination, Optimization, Damping Oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40121130 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar
Abstract:
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.
Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991129 Estimation of Synchronous Machine Synchronizing and Damping Torque Coefficients
Authors: Khaled M. EL-Naggar
Abstract:
Synchronizing and damping torque coefficients of a synchronous machine can give a quite clear picture for machine behavior during transients. These coefficients are used as a power system transient stability measurement. In this paper, a crow search optimization algorithm is presented and implemented to study the power system stability during transients. The algorithm makes use of the machine responses to perform the stability study in time domain. The problem is formulated as a dynamic estimation problem. An objective function that minimizes the error square in the estimated coefficients is designed. The method is tested using practical system with different study cases. Results are reported and a thorough discussion is presented. The study illustrates that the proposed method can estimate the stability coefficients for the critical stable cases where other methods may fail. The tests proved that the proposed tool is an accurate and reliable tool for estimating the machine coefficients for assessment of power system stability.Keywords: Optimization, estimation, synchronous, machine, crow search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6651128 Fuzzy Numbers and MCDM Methods for Portfolio Optimization
Authors: Thi T. Nguyen, Lee N. Gordon-Brown
Abstract:
A new deployment of the multiple criteria decision making (MCDM) techniques: the Simple Additive Weighting (SAW), and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for portfolio allocation, is demonstrated in this paper. Rather than exclusive reference to mean and variance as in the traditional mean-variance method, the criteria used in this demonstration are the first four moments of the portfolio distribution. Each asset is evaluated based on its marginal impacts to portfolio higher moments that are characterized by trapezoidal fuzzy numbers. Then centroid-based defuzzification is applied to convert fuzzy numbers to the crisp numbers by which SAW and TOPSIS can be deployed. Experimental results suggest the similar efficiency of these MCDM approaches to selecting dominant assets for an optimal portfolio under higher moments. The proposed approaches allow investors flexibly adjust their risk preferences regarding higher moments via different schemes adapting to various (from conservative to risky) kinds of investors. The other significant advantage is that, compared to the mean-variance analysis, the portfolio weights obtained by SAW and TOPSIS are consistently well-diversified.Keywords: Fuzzy numbers, SAW, TOPSIS, portfolio optimization, higher moments, risk management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21431127 A Robust Optimization Method for Service Quality Improvement in Health Care Systems under Budget Uncertainty
Authors: H. Ashrafi, S. Ebrahimi, H. Kamalzadeh
Abstract:
With the development of business competition, it is important for healthcare providers to improve their service qualities. In order to improve service quality of a clinic, four important dimensions are defined: tangibles, responsiveness, empathy, and reliability. Moreover, there are several service stages in hospitals such as financial screening and examination. One of the most challenging limitations for improving service quality is budget which impressively affects the service quality. In this paper, we present an approach to address budget uncertainty and provide guidelines for service resource allocation. In this paper, a service quality improvement approach is proposed which can be adopted to multistage service processes to improve service quality, while controlling the costs. A multi-objective function based on the importance of each area and dimension is defined to link operational variables to service quality dimensions. The results demonstrate that our approach is not ultra-conservative and it shows the actual condition very well. Moreover, it is shown that different strategies can affect the number of employees in different stages.
Keywords: Service quality assessment, healthcare resource allocation, robust optimization, budget uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11191126 Q-Learning with Eligibility Traces to Solve Non-Convex Economic Dispatch Problems
Authors: Mohammed I. Abouheaf, Sofie Haesaert, Wei-Jen Lee, Frank L. Lewis
Abstract:
Economic Dispatch is one of the most important power system management tools. It is used to allocate an amount of power generation to the generating units to meet the load demand. The Economic Dispatch problem is a large scale nonlinear constrained optimization problem. In general, heuristic optimization techniques are used to solve non-convex Economic Dispatch problem. In this paper, ideas from Reinforcement Learning are proposed to solve the non-convex Economic Dispatch problem. Q-Learning is a reinforcement learning techniques where each generating unit learn the optimal schedule of the generated power that minimizes the generation cost function. The eligibility traces are used to speed up the Q-Learning process. Q-Learning with eligibility traces is used to solve Economic Dispatch problems with valve point loading effect, multiple fuel options, and power transmission losses.
Keywords: Economic Dispatch, Non-Convex Cost Functions, Valve Point Loading Effect, Q-Learning, Eligibility Traces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871125 User-Based Cannibalization Mitigation in an Online Marketplace
Authors: Vivian Guo, Yan Qu
Abstract:
Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.
Keywords: Cannibalization, machine learning, online marketplace, revenue optimization, yield optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9021124 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs
Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia
Abstract:
Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.
Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29251123 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks
Authors: Maya S. Rathod, Bahadur Singh Hathan
Abstract:
Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, antioxidant activity, total phenolic content, and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100g premix having 16.8% moisture content (w.b).Keywords: Extrusion, mustard leaves powder, optimization, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21731122 Integrating Big Island Layout with Pull System for Production Optimization
Authors: M. H. M. Rusli, A. Jaffar, M. T. Ali, S. Muhamud @ Kayat
Abstract:
Lean manufacturing is a production philosophy made popular by Toyota Motor Corporation (TMC). It is globally known as the Toyota Production System (TPS) and has the ultimate aim of reducing cost by thoroughly eliminating wastes or muda. TPS embraces the Just-in-time (JIT) manufacturing; achieving cost reduction through lead time reduction. JIT manufacturing can be achieved by implementing Pull system in the production. Furthermore, TPS aims to improve productivity and creating continuous flow in the production by arranging the machines and processes in cellular configurations. This is called as Cellular Manufacturing Systems (CMS). This paper studies on integrating the CMS with the Pull system to establish a Big Island-Pull system production for High Mix Low Volume (HMLV) products in an automotive component industry. The paper will use the build-in JIT system steps adapted from TMC to create the Pull system production and also create a shojinka line which, according to takt time, has the flexibility to adapt to demand changes simply by adding and taking out manpower. This will lead to optimization in production.Keywords: Big Island layout, Lean manufacturing, Material and Information Flow Chart, Pull system production, TPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25871121 An Efficient Passive Planar Micromixer with Finshaped Baffles in the Tee Channel for Wide Reynolds Number Flow Range
Authors: C. A. Cortes-Quiroz, A. Azarbadegan, E. Moeendarbary
Abstract:
A new design of a planar passive T-micromixer with fin-shaped baffles in the mixing channel is presented. The mixing efficiency and the level of pressure loss in the channel have been investigated by numerical simulations in the range of Reynolds number (Re) 1 to 50. A Mixing index (Mi) has been defined to quantify the mixing efficiency, which results over 85% at both ends of the Re range, what demonstrates the micromixer can enhance mixing using the mechanisms of diffusion (lower Re) and convection (higher Re). Three geometric dimensions: radius of baffle, baffles pitch and height of the channel define the design parameters, and the mixing index and pressure loss are the performance parameters used to optimize the micromixer geometry with a multi-criteria optimization method. The Pareto front of designs with the optimum trade-offs, maximum mixing index with minimum pressure loss, is obtained. Experiments for qualitative and quantitative validation have been implemented.
Keywords: Computational fluids dynamics, fin-shaped baffle, mixing strategies, multi-objective optimization, passive micromixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987