Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 755

Search results for: nonsubsampled contourlet transform

755 Efficient Feature-Based Registration for CT-M R Images Based on NSCT and PSO

Authors: Nemir Al-Azzawi, Harsa A. Mat Sakim, Wan Ahmed K. Wan Abdullah, Yasmin Mohd Yacob

Abstract:

Feature-based registration is an effective technique for clinical use, because it can greatly reduce computational costs. However, this technique, which estimates the transformation by using feature points extracted from two images, may cause misalignments. To handle with this limitation, we propose to extract the salient edges and extracted control points (CP) of medical images by using efficiency of multiresolution representation of data nonsubsampled contourlet transform (NSCT) that finds the best feature points. The MR images were first decomposed using the NSCT, and then Edge and CP were extracted from bandpass directional subband of NSCT coefficients and some proposed rules. After edge and CP extraction, mutual information was adopted for the registration of feature points and translation parameters are calculated by using particle swarm optimization (PSO). The experimental results showed that the proposed method produces totally accurate performance for registration medical CT-MR images.

Keywords: Feature-based registration, mutual information, nonsubsampled contourlet transform, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
754 Effectiveness of Contourlet vs Wavelet Transform on Medical Image Compression: a Comparative Study

Authors: Negar Riazifar, Mehran Yazdi

Abstract:

Discrete Wavelet Transform (DWT) has demonstrated far superior to previous Discrete Cosine Transform (DCT) and standard JPEG in natural as well as medical image compression. Due to its localization properties both in special and transform domain, the quantization error introduced in DWT does not propagate globally as in DCT. Moreover, DWT is a global approach that avoids block artifacts as in the JPEG. However, recent reports on natural image compression have shown the superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks, compared to DWT. It is mostly due to the optimality of contourlet in representing the edges when they are smooth curves. In this work, we investigate this fact for medical images, especially for CT images, which has not been reported yet. To do that, we propose a compression scheme in transform domain and compare the performance of both DWT and contourlet transform in PSNR for different compression ratios (CR) using this scheme. The results obtained using different type of computed tomography images show that the DWT has still good performance at lower CR but contourlet transform performs better at higher CR.

Keywords: Computed Tomography (CT), DWT, Discrete Contourlet Transform, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
753 Contourlet versus Wavelet Transform for a Robust Digital Image Watermarking Technique

Authors: Ibrahim A. El rube, Mohamad Abou El Nasr , Mostafa M. Naim, Mahmoud Farouk

Abstract:

In this paper, a watermarking algorithm that uses the wavelet transform with Multiple Description Coding (MDC) and Quantization Index Modulation (QIM) concepts is introduced. Also, the paper investigates the role of Contourlet Transform (CT) versus Wavelet Transform (WT) in providing robust image watermarking. Two measures are utilized in the comparison between the waveletbased and the contourlet-based methods; Peak Signal to Noise Ratio (PSNR) and Normalized Cross-Correlation (NCC). Experimental results reveal that the introduced algorithm is robust against different attacks and has good results compared to the contourlet-based algorithm.

Keywords: image watermarking; discrete wavelet transform, discrete contourlet transform, multiple description coding, quantization index modulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
752 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform

Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy

Abstract:

In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.

Keywords: DWT, contourlet transform, digital image watermarking, copyright protection, geometric attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
751 Fingerprint Compression Using Contourlet Transform and Multistage Vector Quantization

Authors: S. Esakkirajan, T. Veerakumar, V. Senthil Murugan, R. Sudhakar

Abstract:

This paper presents a new fingerprint coding technique based on contourlet transform and multistage vector quantization. Wavelets have shown their ability in representing natural images that contain smooth areas separated with edges. However, wavelets cannot efficiently take advantage of the fact that the edges usually found in fingerprints are smooth curves. This issue is addressed by directional transforms, known as contourlets, which have the property of preserving edges. The contourlet transform is a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. The computation and storage requirements are the major difficulty in implementing a vector quantizer. In the full-search algorithm, the computation and storage complexity is an exponential function of the number of bits used in quantizing each frame of spectral information. The storage requirement in multistage vector quantization is less when compared to full search vector quantization. The coefficients of contourlet transform are quantized by multistage vector quantization. The quantized coefficients are encoded by Huffman coding. The results obtained are tabulated and compared with the existing wavelet based ones.

Keywords: Contourlet Transform, Directional Filter bank, Laplacian Pyramid, Multistage Vector Quantization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
750 The Use of Complex Contourlet Transform on Fusion Scheme

Authors: Dipeng Chen, Qi Li

Abstract:

Image fusion aims to enhance the perception of a scene by combining important information captured by different sensors. Dual-Tree Complex Wavelet (DT-CWT) has been thouroughly investigated for image fusion, since it takes advantages of approximate shift invariance and direction selectivity. But it can only handle limited direction information. To allow a more flexible directional expansion for images, we propose a novel fusion scheme, referred to as complex contourlet transform (CCT). It successfully incorporates directional filter banks (DFB) into DT-CWT. As a result it efficiently deal with images containing contours and textures, whereas it retains the property of shift invariance. Experimental results demonstrated that the method features high quality fusion performance and can facilitate many image processing applications.

Keywords: Complex contourlet transform, Complex wavelettransform, Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
749 Speckle Reducing Contourlet Transform for Medical Ultrasound Images

Authors: P.S. Hiremath, Prema T. Akkasaligar, Sharan Badiger

Abstract:

Speckle noise affects all coherent imaging systems including medical ultrasound. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image content. Even though wavelets have been extensively used for denoising speckle images, we have found that denoising using contourlets gives much better performance in terms of SNR, PSNR, MSE, variance and correlation coefficient. The objective of the paper is to determine the number of levels of Laplacian pyramidal decomposition, the number of directional decompositions to perform on each pyramidal level and thresholding schemes which yields optimal despeckling of medical ultrasound images, in particular. The proposed method consists of the log transformed original ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients. The transformed image is denoised by applying thresholding techniques on individual band pass sub bands using a Bayes shrinkage rule. We quantify the achieved performance improvement.

Keywords: Contourlet transform, Despeckling, Pyramidal directionalfilter bank, Thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
748 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition

Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine

Abstract:

In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.

Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
747 Combined DWT-CT Blind Digital Image Watermarking Algorithm

Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy

Abstract:

In this paper, we propose a new robust and secure system that is based on the combination between two different transforms Discrete wavelet Transform (DWT) and Contourlet Transform (CT). The combined transforms will compensate the drawback of using each transform separately. The proposed algorithm has been designed, implemented and tested successfully. The experimental results showed that selecting the best sub-band for embedding from both transforms will improve the imperceptibility and robustness of the new combined algorithm. The evaluated imperceptibility of the combined DWT-CT algorithm which gave a PSNR value 88.11 and the combination DWT-CT algorithm improves robustness since it produced better robust against Gaussian noise attack. In addition to that, the implemented system shored a successful extraction method to extract watermark efficiently.

Keywords: DWT, CT, Digital Image Watermarking, Copyright Protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630
746 Modified Fast and Exact Algorithm for Fast Haar Transform

Authors: Phang Chang, Phang Piau

Abstract:

Wavelet transform or wavelet analysis is a recently developed mathematical tool in applied mathematics. In numerical analysis, wavelets also serve as a Galerkin basis to solve partial differential equations. Haar transform or Haar wavelet transform has been used as a simplest and earliest example for orthonormal wavelet transform. Since its popularity in wavelet analysis, there are several definitions and various generalizations or algorithms for calculating Haar transform. Fast Haar transform, FHT, is one of the algorithms which can reduce the tedious calculation works in Haar transform. In this paper, we present a modified fast and exact algorithm for FHT, namely Modified Fast Haar Transform, MFHT. The algorithm or procedure proposed allows certain calculation in the process decomposition be ignored without affecting the results.

Keywords: Fast Haar Transform, Haar transform, Wavelet analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
745 Comparison of S-transform and Wavelet Transform in Power Quality Analysis

Authors: Mohammad Javad Dehghani

Abstract:

In the power quality analysis non-stationary nature of voltage distortions require some precise and powerful analytical techniques. The time-frequency representation (TFR) provides a powerful method for identification of the non-stationary of the signals. This paper investigates a comparative study on two techniques for analysis and visualization of voltage distortions with time-varying amplitudes. The techniques include the Discrete Wavelet Transform (DWT), and the S-Transform. Several power quality problems are analyzed using both the discrete wavelet transform and S–transform, showing clearly the advantage of the S– transform in detecting, localizing, and classifying the power quality problems.

Keywords: Power quality, S-Transform, Short Time FourierTransform , Wavelet Transform, instantaneous sag, swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
744 Design of Low-Area HEVC Core Transform Architecture

Authors: Seung-Mok Han, Woo-Jin Nam, Seongsoo Lee

Abstract:

This paper proposes and implements an core transform architecture, which is one of the major processes in HEVC video compression standard. The proposed core transform architecture is implemented with only adders and shifters instead of area-consuming multipliers. Shifters in the proposed core transform architecture are implemented in wires and multiplexers, which significantly reduces chip area. Also, it can process from 4×4 to 16×16 blocks with common hardware by reusing processing elements. Designed core transform architecture in 0.13um technology can process a 16×16 block with 2-D transform in 130 cycles, and its gate count is 101,015 gates.

Keywords: HEVC, Core transform, Low area, Shift-and-add, PE reuse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
743 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir Movafeghi, Shahab Moradi

Abstract:

One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: Computed Tomography (CT), noise reduction, curve-let, contour-let, Signal to Noise Peak-Peak Ratio (PSNR), Structure Similarity (Ssim), Absorbed Dose to Patient (ADP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
742 Near-Lossless Image Coding based on Orthogonal Polynomials

Authors: Krishnamoorthy R, Rajavijayalakshmi K, Punidha R

Abstract:

In this paper, a near lossless image coding scheme based on Orthogonal Polynomials Transform (OPT) has been presented. The polynomial operators and polynomials basis operators are obtained from set of orthogonal polynomials functions for the proposed transform coding. The image is partitioned into a number of distinct square blocks and the proposed transform coding is applied to each of these individually. After applying the proposed transform coding, the transformed coefficients are rearranged into a sub-band structure. The Embedded Zerotree (EZ) coding algorithm is then employed to quantize the coefficients. The proposed transform is implemented for various block sizes and the performance is compared with existing Discrete Cosine Transform (DCT) transform coding scheme.

Keywords: Near-lossless Coding, Orthogonal Polynomials Transform, Embedded Zerotree Coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
741 A Comparative Study between Discrete Wavelet Transform and Maximal Overlap Discrete Wavelet Transform for Testing Stationarity

Authors: Amel Abdoullah Ahmed Dghais, Mohd Tahir Ismail

Abstract:

In this paper the core objective is to apply discrete wavelet transform and maximal overlap discrete wavelet transform functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and discrete approximation of the Meyer wavelets in non stationary financial time series data from Dow Jones index (DJIA30) of US stock market. The data consists of 2048 daily data of closing index from December 17, 2004 to October 23, 2012. Unit root test affirms that the data is non stationary in the level. A comparison between the results to transform non stationary data to stationary data using aforesaid transforms is given which clearly shows that the decomposition stock market index by discrete wavelet transform is better than maximal overlap discrete wavelet transform for original data.

Keywords: Discrete wavelet transform, maximal overlap discrete wavelet transform, stationarity, autocorrelation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4436
740 Quality Factor Variation with Transform Order in Fractional Fourier Domain

Authors: Sukrit Shankar, Chetana Shanta Patsa, K. Pardha Saradhi, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a powerful tool, which is a generalization of the classical Fourier Transform. This paper provides a mathematical relation relating the span in Fractional Fourier domain with the amplitude and phase functions of the signal, which is further used to study the variation of quality factor with different values of the transform order. It is seen that with the increase in the number of transients in the signal, the deviation of average Fractional Fourier span from the frequency bandwidth increases. Also, with the increase in the transient nature of the signal, the optimum value of transform order can be estimated based on the quality factor variation, and this value is found to be very close to that for which one can obtain the most compact representation. With the entire mathematical analysis and experimentation, we consolidate the fact that Fractional Fourier Transform gives more optimal representations for a number of transform orders than Fourier transform.

Keywords: Fractional Fourier Transform, Quality Factor, Fractional Fourier span, transient signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
739 An Efficient Hamiltonian for Discrete Fractional Fourier Transform

Authors: Sukrit Shankar, Pardha Saradhi K., Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fractional Fourier Transform and show that the eigenvectors of the proposed matrix has a higher degree of correlation with the Hermite Gaussian functions. Also, the proposed matrix is shown to give better Fractional Fourier responses with various transform orders for different signals.

Keywords: Fractional Fourier Transform, Hamiltonian, Eigen Vectors, Discrete Hermite Gaussians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
738 Numerical Inverse Laplace Transform Using Chebyshev Polynomial

Authors: Vinod Mishra, Dimple Rani

Abstract:

In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.

Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
737 Perturbation in the Fractional Fourier Span due to Erroneous Transform Order and Window Function

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform. The Fractional Fourier span in general depends on the amplitude and phase functions of the signal and varies with the transform order. However, with the development of the Fractional Fourier filter banks, it is advantageous in some cases to have different transform orders for different filter banks to achieve better decorrelation of the windowed and overlapped time signal. We present an expression that is useful for finding the perturbation in the Fractional Fourier span due to the erroneous transform order and the possible variation in the window shape and length. The expression is based on the dependency of the time-Fractional Fourier span Uncertainty on the amplitude and phase function of the signal. We also show with the help of the developed expression that the perturbation of span has a varying degree of sensitivity for varying degree of transform order and the window coefficients.

Keywords: Fractional Fourier Transform, Perturbation, Fractional Fourier span, amplitude, phase, transform order, filterbanks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
736 EEG Waves Classifier using Wavelet Transform and Fourier Transform

Authors: Maan M. Shaker

Abstract:

The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field due to its rich information about human tasks. In this work EEG waves classification is achieved using the Discrete Wavelet Transform DWT with Fast Fourier Transform (FFT) by adopting the normalized EEG data. The DWT is used as a classifier of the EEG wave's frequencies, while FFT is implemented to visualize the EEG waves in multi-resolution of DWT. Several real EEG data sets (real EEG data for both normal and abnormal persons) have been tested and the results improve the validity of the proposed technique.

Keywords: Bioinformatics, DWT, EEG waves, FFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5189
735 Texture Feature Extraction using Slant-Hadamard Transform

Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi

Abstract:

Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.

Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
734 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm

Authors: Mohamed E. Salem Abozaed

Abstract:

Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notching

Keywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
733 Fast Cosine Transform to Increase Speed-up and Efficiency of Karhunen-Loève Transform for Lossy Image Compression

Authors: Mario Mastriani, Juliana Gambini

Abstract:

In this work, we present a comparison between two techniques of image compression. In the first case, the image is divided in blocks which are collected according to zig-zag scan. In the second one, we apply the Fast Cosine Transform to the image, and then the transformed image is divided in blocks which are collected according to zig-zag scan too. Later, in both cases, the Karhunen-Loève transform is applied to mentioned blocks. On the other hand, we present three new metrics based on eigenvalues for a better comparative evaluation of the techniques. Simulations show that the combined version is the best, with minor Mean Absolute Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to Noise Ratio (PSNR) and better image quality. Finally, new technique was far superior to JPEG and JPEG2000.

Keywords: Fast Cosine Transform, image compression, JPEG, JPEG2000, Karhunen-Loève Transform, zig-zag scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4672
732 Statistical Distributions of the Lapped Transform Coefficients for Images

Authors: Vijay Kumar Nath, Deepika Hazarika, Anil Mahanta,

Abstract:

Discrete Cosine Transform (DCT) based transform coding is very popular in image, video and speech compression due to its good energy compaction and decorrelating properties. However, at low bit rates, the reconstructed images generally suffer from visually annoying blocking artifacts as a result of coarse quantization. Lapped transform was proposed as an alternative to the DCT with reduced blocking artifacts and increased coding gain. Lapped transforms are popular for their good performance, robustness against oversmoothing and availability of fast implementation algorithms. However, there is no proper study reported in the literature regarding the statistical distributions of block Lapped Orthogonal Transform (LOT) and Lapped Biorthogonal Transform (LBT) coefficients. This study performs two goodness-of-fit tests, the Kolmogorov-Smirnov (KS) test and the 2- test, to determine the distribution that best fits the LOT and LBT coefficients. The experimental results show that the distribution of a majority of the significant AC coefficients can be modeled by the Generalized Gaussian distribution. The knowledge of the statistical distribution of transform coefficients greatly helps in the design of optimal quantizers that may lead to minimum distortion and hence achieve optimal coding efficiency.

Keywords: Lapped orthogonal transform, Lapped biorthogonal transform, Image compression, KS test,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
731 Approximate Range-Sum Queries over Data Cubes Using Cosine Transform

Authors: Wen-Chi Hou, Cheng Luo, Zhewei Jiang, Feng Yan

Abstract:

In this research, we propose to use the discrete cosine transform to approximate the cumulative distributions of data cube cells- values. The cosine transform is known to have a good energy compaction property and thus can approximate data distribution functions easily with small number of coefficients. The derived estimator is accurate and easy to update. We perform experiments to compare its performance with a well-known technique - the (Haar) wavelet. The experimental results show that the cosine transform performs much better than the wavelet in estimation accuracy, speed, space efficiency, and update easiness.

Keywords: DCT, Data Cube

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
730 Feature Level Fusion of Multimodal Images Using Haar Lifting Wavelet Transform

Authors: Sudipta Majumdar, Jayant Bharadwaj

Abstract:

This paper presents feature level image fusion using Haar lifting wavelet transform. Feature fused is edge and boundary information, which is obtained using wavelet transform modulus maxima criteria. Simulation results show the superiority of the result as entropy, gradient, standard deviation are increased for fused image as compared to input images. The proposed methods have the advantages of simplicity of implementation, fast algorithm, perfect reconstruction, and reduced computational complexity. (Computational cost of Haar wavelet is very small as compared to other lifting wavelets.)

Keywords: Lifting wavelet transform, wavelet transform modulus maxima.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
729 High Impedance Faults Detection Technique Based on Wavelet Transform

Authors: Ming-Ta Yang, Jin-Lung Guan, Jhy-Cherng Gu

Abstract:

The purpose of this paper is to solve the problem of protecting aerial lines from high impedance faults (HIFs) in distribution systems. This investigation successfully applies 3I0 zero sequence current to solve HIF problems. The feature extraction system based on discrete wavelet transform (DWT) and the feature identification technique found on statistical confidence are then applied to discriminate effectively between the HIFs and the switch operations. Based on continuous wavelet transform (CWT) pattern recognition of HIFs is proposed, also. Staged fault testing results demonstrate that the proposed wavelet based algorithm is feasible performance well.

Keywords: Continuous wavelet transform, discrete wavelet transform, high impedance faults, statistical confidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
728 Frequency-Energy Characteristics of Local Earthquakes using Discrete Wavelet Transform(DWT)

Authors: O. H. Colak, T. C. Destici, S. Ozen, H. Arman, O. Cerezci

Abstract:

The wavelet transform is one of the most important method used in signal processing. In this study, we have introduced frequency-energy characteristics of local earthquakes using discrete wavelet transform. Frequency-energy characteristic was analyzed depend on difference between P and S wave arrival time and noise within records. We have found that local earthquakes have similar characteristics. If frequency-energy characteristics can be found accurately, this gives us a hint to calculate P and S wave arrival time. It can be seen that wavelet transform provides successful approximation for this. In this study, 100 earthquakes with 500 records were analyzed approximately.

Keywords: Discrete Wavelet Transform, Frequency-EnergyCharacteristics, P and S waves arrival time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
727 Comparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN

Authors: K.Gayathri, N. Kumarappan

Abstract:

An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multiresolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Artificial Neural Network (ANN) and Discrete Wavelet Transform (DWT). The results prove that the proposed method is an effective and efficient one in obtaining the accurate result within short duration of time by using Daubechies 4 and 9. Simulation of the power system is done using MATLAB.

Keywords: EHV transmission line, Fault identification and classification, Discrete wavelet transform, Multiresolution analysis, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
726 Analysis of Chatter in Ball End Milling by Wavelet Transform

Authors: S. Tangjitsitcharoen

Abstract:

The chatter is one of the major limitations of the productivity in the ball end milling process. It affects the surface roughness, the dimensional accuracy and the tool life. The aim of this research is to propose the new system to detect the chatter during the ball end milling process by using the wavelet transform. The proposed method is implemented on the 5-axis CNC machining center and the new three parameters are introduced from three dynamic cutting forces, which are calculated by taking the ratio of the average variances of dynamic cutting forces to the absolute variances of themselves. It had been proved that the chatter can be easier to detect during the in-process cutting by using the new parameters which are proposed in this research. The experimentally obtained results showed that the wavelet transform can provide the reliable results to detect the chatter under various cutting conditions.

Keywords: Ball end milling, wavelet transform, fast fourier transform, chatter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116