**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31097

##### Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction

**Authors:**
H. Shayeghi,
M. Mahdavi,
A. Kazemi

**Abstract:**

**Keywords:**
DPSO algorithm,
Adequacy restriction,
STNEP

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1061432

**References:**

[1] A. R. Abdelaziz, Genetic algorithm-based power transmission expansion planning, Proc. the 7th IEEE International Conference on Electronics, Circuits and Systems, Jounieh, Vol. 2, December 2000, pp. 642-645.

[2] V. A. Levi, M. S. Calovic, Linear-programming-based decomposition method for optimal planning of transmission network investments, IEE Proc. Generation, Transmission and Distribution, Vol. 140, No. 6, 1993, pp. 516-522.

[3] S. Binato, G. C. de Oliveira, J. L. Araujo, A greedy randomized adaptive search procedure for transmission expansion planning, IEEE Trans. Power Systems, Vol. 16, No. 2, 2001, pp. 247-253.

[4] J. Choi, T. Mount, R. Thomas, Transmission system expansion plans in view point of deterministic, probabilistic and security reliability criteria, Proc. the 39th Hawaii International Conference on System Sciences, Hawaii, Vol. 10, Jan. 2006, pp. 247b-247b.

[5] I. D. J. Silva, M. J. Rider, R. Romero, C. A. Murari, Transmission network expansion planning considering uncertainness in demand, Proc. 2005 IEEE Power Engineering Society General Meeting, Vol. 2, pp. 1424-1429.

[6] S. Binato, M. V. F. Periera, S. Granville, A new Benders decomposition approach to solve power transmission network design problems, IEEE Trans. Power Systems, Vol. 16, No. 2, 2001, pp. 235-240.

[7] L. L. Garver, Transmission net estimation using linear programming, IEEE Trans. Power Apparatus and Systems, Vol. PAS-89, No. 7, 1970, pp. 1688-1696.

[8] T. Al-Saba, I. El-Amin, The application of artificial intelligent tools to the transmission expansion problem, Electric Power Systems Research, Vol. 62, No. 2, 2002, pp. 117-126.

[9] R. Chaturvedi, K. Bhattacharya, J. Parikh, Transmission planning for Indian power grid: a mixed integer programming approach, International Trans. Operational Research, Vol. 6, No. 5, 1999, pp. 465-482.

[10] J. Contreras, F. F. Wu, A kernel-oriented algorithm for transmission expansion planning, IEEE Trans. Power Systems, Vol. 15, No. 4, 2000, pp. 1434-1440.

[11] R. A. Gallego, A. Monticelli, R. Romero, Transmission system expansion planning by an extended genetic algorithm, IEE Proc. Generation, Transmission and Distribution, Vol. 145, No. 3, 1998, pp. 329-335.

[12] R. A. Gallego, R. Romero, A. J. Monticelli, Tabu search algorithm for network synthesis, IEEE Trans. Power Systems, Vol. 15, No. 2, 2000, pp. 490-495.

[13] K. J. Kim, Y. M. Park, K. Y. Lee, Optimal long-term transmission expansion planning based on maximum principle, IEEE Trans. Power Systems, Vol. 3, No. 4, 1988, pp. 1494-1501.

[14] G. Liu, H. Sasaki, N. Yorino, Application of network topology to long range composite expansion planning of generation and transmission lines, Electric Power Systems Research, Vol. 57, No. 3, 2001, pp. 157- 162.

[15] M. V. F. Periera, L. M. V. G. Pinto, Application of sensitivity analysis of load supplying capacity to interactive transmission expansion planning, IEEE Trans. Power Apparatus and Systems, Vol. PAS-104, 1985, pp. 381-389.

[16] R. Romero, R. A. Gallego, A. Monticelli, Transmission system expansion planning by simulated annealing, IEEE Trans. Power Systems, Vol. 11, No. 1, 1996, pp. 364-369.

[17] R. Romero, A. Monticelli, A hierarchical decomposition approach for transmission network expansion planning, IEEE Trans. Power Systems, Vol. 9, No. 1, 1994, pp. 373-380.

[18] R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning, IEEE Trans. Power Systems, Vol. 9, No. 3, 1994, pp. 1385-1391.

[19] H. Samarakoon, R. M. Shrestha, O. Fujiwara, A mixed integer linear programming model for transmission expansion planning with generation location selection, Electrical Power and Energy Systems, Vol. 23, No. 4, 2001, pp. 285-293.

[20] E. L. da Silva, H. A. Gil, J. M. Areiza, Transmission network expansion planning under an improved genetic algorithm, IEEE Trans. Power Systems, Vol. 15, No. 3, 2000, pp. 1168-1174.

[21] R. Teive, E. L. Silva, L. G. S. Fonseca, A cooperative expert system for transmission expansion planning of electrical power systems, IEEE Trans. Power Systems, Vol. 13, No. 2, 1998, pp. 636-642.

[22] J. Yen, Y. Yan, J. Contreras, P. C. Ma, F. F. Wu, Multi-agent approach to the planning of power transmission expansion, Decision Support Systems, Vol. 28, No. 3, 2000, pp. 279-290.

[23] N. Alguacil, A. L. Motto, A. J. Conejo, Transmission expansion planning: a mixed-integer LP approach, IEEE Trans. Power Systems, Vol. 18, No. 3, 2003, pp. 1070-1077.

[24] A. M. L. da Silva, S. M. P. Ribeiro, V. L. Arienti, R. N. Allan, M. B. D. C. Filho, Probabilistic load flow techniques applied to power system expansion planning, IEEE Trans. Power Systems, Vol. 5, No. 4, 1990, pp. 1047-1053.

[25] R. A. Gallego, A. B. Alves, A. Monticelli, R. Romero, Parallel simulated annealing applied to long term transmission network expansion planning, IEEE Trans. Power Systems, Vol. 12, No. 1, 1997, pp. 181- 188.

[26] R. S. Chanda, P. K. Bhattacharjee, A reliability approach to transmission expansion planning using fuzzy fault-tree model, Electric Power Systems Research, Vol. 45, No. 2 1998, pp. 101-108.

[27] R. S. Chanda, P. K. Bhattacharjee, A reliability approach to transmission expansion planning using minimal cut theory, Electric Power Systems Research, Vol. 33, No. 2, 1995, pp. 111-117.

[28] N. H. Sohtaoglu, The effect of economic parameters on power transmission planning, IEEE Trans. Power Systems, Vol. 13, 1998, pp. 941-945.

[29] B. Graeber, Generation and transmission expansion planning in southern Africa, IEEE Trans. Power Systems, Vol. 14, 1999, pp. 983-988.

[30] M. S. Kandil, S. M. El-Debeiky, N. E. Hasanien, Rule-based system for determining unit locations of a developed generation expansion plan for transmission planning, IEE Proc. Generation, Transmission and Distribution, Vol. 147, No. 1, 2000, pp. 62-68.

[31] S. T. Y. Lee, K. L. Hocks, H. Hnyilicza, Transmission expansion of branch and bound integer programming with optimal cost capacity curves, IEEE Trans. Power Apparatus and Systems, Vol. PAS-93, No. 7, 1970, pp. 1390-1400.

[32] A. S. D. Braga, J. T. Saraiva, A multiyear dynamic approach for transmission expansion planning and long-term marginal costs computation, IEEE Trans. Power Systems, Vol. 20, No. 3, 2005, pp. 1631-1639.

[33] Y. X. Jin, H. Z. Cheng, J. Y. M. Yan, L. Zhang, New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, Vol. 77, No. 3-4, 2007, pp. 227-233.

[34] S. Jalilzadeh, A. Kazemi, H. Shayeghi, M. Mahdavi, Technical and economic evaluation of voltage level in transmission network expansion planning using GA, Energy Conversion and Management, Vol. 49, No. 5, May 2008, pp. 1119-1125.

[35] H. Shayeghi, S. Jalilzadeh, M. Mahdavi, H. Haddadian, Studying influence of two effective parameters on network losses in transmission expansion planning using DCGA, Energy Conversion and Management, Vol. 49, No. 11, 2008, pp. 3017-3024.

[36] H. Shayeghi, A. Jalili, H. A. Shayanfar, Multi-stage fuzzy load frequency control using PSO, Energy Conversion and Management, Vol. 49, No. 10, 2008, pp. 2570-2580.

[37] J. Kennedy, R. Eberhart, Y. Shi, Swarm intelligence, Morgan Kaufmann Publishers, San Francisco; 2001.

[38] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evolutionary Computation, Vol. 6, No. 1, 2002, pp. 301758-73.