Search results for: Image signal processor
1883 Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis
Authors: Bandula-Heva, T., Dhanasekar, M.
Abstract:
True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.Keywords: Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34551882 Determination and Comparison of Fabric Pills Distribution Using Image Processing and Spatial Data Analysis Tools
Authors: Lenka Techniková, Maroš Tunák, Jiří Janáček
Abstract:
This work deals with the determination and comparison of pill patterns in 2 sets of fabric samples which differ in way of pill creation. The first set contains fabric samples with the pills created by simulation on a Martindale abrasion machine, while pills in the second set originated during normal wearing and maintenance. The goal of the study is to determine whether the pattern of the fabric pills created by simulation is the same as the pattern of naturally occurring pills. The system of determination and comparison of the pills is based on image processing and spatial data analysis tools. Firstly, 3D reconstruction of the fabric surfaces with the pills is realized with using a gradient fields method. The gradient fields method creates a 3D fabric surface from a set of 4 images. Thereafter, the pills are detected in 3D fabric surfaces using image-processing tools in the MATLAB software. Determination and comparison of the pills patterns of two sets of fabric samples is based on spatial data analysis using tools in R software.
Keywords: 3D reconstruction of the surface, image analysis tools, distribution of the pills, spatial data analysis tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831881 Continuous Wave Interference Effects on Global Position System Signal Quality
Authors: Fang Ye, Han Yu, Yibing Li
Abstract:
Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981880 Video Quality Control Using a ROI and Two- Component Weighted Metrics
Authors: Petra Heribanová, Jaroslav Polec, Michal Martinovič
Abstract:
In this paper we propose a new content-weighted method for full reference (FR) video quality control using a region of interest (ROI) and wherein two-component weighted metrics for Deaf People Video Communication. In our approach, an image is partitioned into region of interest and into region "dry-as-dust", then region of interest is partitioned into two parts: edges and background (smooth regions), while the another methods (metrics) combined and weighted three or more parts as edges, edges errors, texture, smooth regions, blur, block distance etc. as we proposed. Using another idea that different image regions from deaf people video communication have different perceptual significance relative to quality. Intensity edges certainly contain considerable image information and are perceptually significant.
Keywords: Video quality assessment, weighted MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891879 Mining and Visual Management of XML-Based Image Collections
Authors: Khalil Shihab, Nida Al-Chalabi
Abstract:
This article describes Uruk, the virtual museum of Iraq that we developed for visual exploration and retrieval of image collections. The system largely exploits the loosely-structured hierarchy of XML documents that provides a useful representation method to store semi-structured or unstructured data, which does not easily fit into existing database. The system offers users the capability to mine and manage the XML-based image collections through a web-based Graphical User Interface (GUI). Typically, at an interactive session with the system, the user can browse a visual structural summary of the XML database in order to select interesting elements. Using this intermediate result, queries combining structure and textual references can be composed and presented to the system. After query evaluation, the full set of answers is presented in a visual and structured way.Keywords: Data-centric XML, graphical user interfaces, information retrieval, case-based reasoning, fuzzy sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17961878 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique
Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain
Abstract:
Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741877 Loop Back Connected Component Labeling Algorithm and Its Implementation in Detecting Face
Authors: A. Rakhmadi, M. S. M. Rahim, A. Bade, H. Haron, I. M. Amin
Abstract:
In this study, a Loop Back Algorithm for component connected labeling for detecting objects in a digital image is presented. The approach is using loop back connected component labeling algorithm that helps the system to distinguish the object detected according to their label. Deferent than whole window scanning technique, this technique reduces the searching time for locating the object by focusing on the suspected object based on certain features defined. In this study, the approach was also implemented for a face detection system. Face detection system is becoming interesting research since there are many devices or systems that require detecting the face for certain purposes. The input can be from still image or videos, therefore the sub process of this system has to be simple, efficient and accurate to give a good result.Keywords: Image processing, connected components labeling, face detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23091876 Computer Generated Hologram for SemiFragile Watermarking with Encrypted Images
Authors: G. Schirripa Spagnolo, M. De Santis
Abstract:
The protection of the contents of digital products is referred to as content authentication. In some applications, to be able to authenticate a digital product could be extremely essential. For example, if a digital product is used as a piece of evidence in the court, its integrity could mean life or death of the accused. Generally, the problem of content authentication can be solved using semifragile digital watermarking techniques. Recently many authors have proposed Computer Generated Hologram Watermarking (CGHWatermarking) techniques. Starting from these studies, in this paper a semi-fragile Computer Generated Hologram coding technique is proposed, which is able to detect malicious tampering while tolerating some incidental distortions. The proposed technique uses as watermark an encrypted image, and it is well suitable for digital image authentication.Keywords: Asymmetric cryptography, Semi-Fragile watermarking, Image authentication, Hologram watermark, Public- Key Cryptography, RSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16131875 Speech Intelligibility Improvement Using Variable Level Decomposition DWT
Authors: Samba Raju, Chiluveru, Manoj Tripathy
Abstract:
Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methodsKeywords: Discrete Wavelet Transform, speech intelligibility, STOI, standard deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7021874 Comparison between Haar and Daubechies Wavelet Transformions on FPGA Technology
Authors: Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab, Fatma H. Elfouly
Abstract:
Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the comparison between the Haar and Daubechies wavelets is investigated. The Bit Error Rat (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. It is seen that the BER using Daubechies wavelet techniques is less than Haar wavelet. The design procedure has been explained and designed using the stat-of-art Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.
Keywords: Daubechies wavelet, discrete wavelet transform, Haar wavelet, Xilinx FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48581873 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique
Authors: Mohammad A. Khasawneh
Abstract:
Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure.
The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab.
Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.
Keywords: Friction, Image Analysis, Polishing, Statistical Analysis, Texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25681872 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis
Authors: R. Rama Kishore, Sunesh
Abstract:
This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.
Keywords: Digital watermarking, discrete cosine transform, chaotic grid map, entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7261871 Elimination Noise by Adaptive Wavelet Threshold
Authors: Iman Elyasi, Sadegh Zarmehi
Abstract:
Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.
Keywords: Image denoising, Bayes Shrink, Modified Bayes Shrink, Normal Shrink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24781870 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images
Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi
Abstract:
In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691869 Vision-based Network System for Industrial Applications
Authors: Taweepol Suesut, Arjin Numsomran, Vittaya Tipsuwanporn
Abstract:
This paper presents the communication network for machine vision system to implement to control systems and logistics applications in industrial environment. The real-time distributed over the network is very important for communication among vision node, image processing and control as well as the distributed I/O node. A robust implementation both with respect to camera packaging and data transmission has been accounted. This network consists of a gigabit Ethernet network and a switch with integrated fire-wall is used to distribute the data and provide connection to the imaging control station and IEC-61131 conform signal integration comprising the Modbus TCP protocol. The real-time and delay time properties each part on the network were considered and worked out in this paper.Keywords: Distributed Real-Time Automation, Machine Visionand Ethernet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16731868 Space Vector Pulse Width Modulation Technique Based Design and Simulation of a Three-Phase Voltage Source Converter Systems
Authors: Farhan Beg
Abstract:
A Space Vector based Pulse Width Modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the Space Vector based Pulse Width Modulation, Sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value sine signal is large than triangle signal, the pulse will start produce to high. And then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will changed by changing the value of the modulation index and frequency used in this system to produce more pulse width. The more pulse width produced, the output voltage will have lower harmonics contents and the resolution increase.
Keywords: Power Factor, SVPWM, PWM rectifier, SPWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40291867 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure
Authors: A. Arya, R. Laha, V. R. Dantham
Abstract:
We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.Keywords: Localized surface plasmons, photonic nanojet, SERS, whispering gallery mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11281866 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081865 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33101864 Stroke Extraction and Approximation with Interpolating Lagrange Curves
Authors: Bence Kővári, ZSolt Kertész
Abstract:
This paper proposes a stroke extraction method for use in off-line signature verification. After giving a brief overview of the current ongoing researches an algorithm is introduced for detecting and following strokes in static images of signatures. Problems like the handling of junctions and variations in line width and line intensity are discussed in detail. Results are validated by both using an existing on-line signature database and by employing image registration methods.
Keywords: Stroke extraction, spline fitting, off-line signatureverification, image registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19871863 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.
Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5971862 Tree Based Decomposition of Sunspot Images
Authors: Hossein Mirzaee, Farhad Besharati
Abstract:
Solar sunspot rotation, latitudinal bands are studied based on intelligent computation methods. A combination of image fusion method with together tree decomposition is used to obtain quantitative values about the latitudes of trajectories on sun surface that sunspots rotate around them. Daily solar images taken with SOlar and Heliospheric (SOHO) satellite are fused for each month separately .The result of fused image is decomposed with Quad Tree decomposition method in order to achieve the precise information about latitudes of sunspot trajectories. Such analysis is useful for gathering information about the regions on sun surface and coordinates in space that is more expose to solar geomagnetic storms, tremendous flares and hot plasma gases permeate interplanetary space and help human to serve their technical systems. Here sunspot images in September, November and October in 2001 are used for studying the magnetic behavior of sun.Keywords: Quad tree decomposition, sunspot image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12601861 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: Day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45191860 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity
Authors: Ni Ni Soe , Masahiro Nakagawa
Abstract:
Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17341859 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20001858 Perturbation in the Fractional Fourier Span due to Erroneous Transform Order and Window Function
Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma
Abstract:
Fractional Fourier Transform is a generalization of the classical Fourier Transform. The Fractional Fourier span in general depends on the amplitude and phase functions of the signal and varies with the transform order. However, with the development of the Fractional Fourier filter banks, it is advantageous in some cases to have different transform orders for different filter banks to achieve better decorrelation of the windowed and overlapped time signal. We present an expression that is useful for finding the perturbation in the Fractional Fourier span due to the erroneous transform order and the possible variation in the window shape and length. The expression is based on the dependency of the time-Fractional Fourier span Uncertainty on the amplitude and phase function of the signal. We also show with the help of the developed expression that the perturbation of span has a varying degree of sensitivity for varying degree of transform order and the window coefficients.Keywords: Fractional Fourier Transform, Perturbation, Fractional Fourier span, amplitude, phase, transform order, filterbanks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14801857 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS
Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao
Abstract:
The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.
Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21631856 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5511855 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.
Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4941854 Development of a Serial Signal Monitoring Program for Educational Purposes
Authors: Jungho Moon, Lae-Jeong Park
Abstract:
This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.Keywords: Digital sensor, MATLAB, MCU, signal monitoring program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120