Search results for: Hybrid fault diagnosis
641 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology
Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester
Abstract:
Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.
Keywords: Composite material, Fiber metal laminate, Lightweight construction, Prepreg press technology, Large-series production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892640 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709639 Comparison of Different PWM Switching Modes of BLDC Motor as Drive Train of Electric Vehicles
Authors: A. Tashakori, M. Ektesabi
Abstract:
Electric vehicle (EV) is one of the effective solutions to control emission of greenhouses gases in the world. It is of interest for future transportation due to its sustainability and efficiency by automotive manufacturers. Various electrical motors have been used for propulsion system of electric vehicles in last decades. In this paper brushed DC motor, Induction motor (IM), switched reluctance motor (SRM) and brushless DC motor (BLDC) are simulated and compared. BLDC motor is recommended for high performance electric vehicles. PWM switching technique is implemented for speed control of BLDC motor. Behavior of different modes of PWM speed controller of BLDC motor are simulated in MATLAB/SIMULINK. BLDC motor characteristics are compared and discussed for various PWM switching modes under normal and inverter fault conditions. Comparisons and discussions are verified through simulation results.Keywords: BLDC motor, PWM switching technique, in-wheel technology, electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4845638 Soil Resistivity Cut off Value and Concrete Pole Deployments in HV Transmission Mains
Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial
Abstract:
The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; many retired transmission mains with timber poles are being replaced with concrete ones, green transmission mains are deploying concrete poles. The earthing arrangement of the concrete poles could have an impact on the earth grid impedance also on the input impedance of the system from the fault point of view. This paper endeavors to provide information on the soil resistivity of the area and the deployments of concrete poles. It introduce the cut off soil resistivity value ρSC, this value aid in determine the impact of deploying the concrete poles on the earthing system. Multiple cases were discussed in this paper.
Keywords: Soil Resistivity, HV Transmission Mains, Earthing, Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529637 Survey on Awareness, Knowledge and Practices: Managing Osteoporosis among Practitioners in a Tertiary Hospital, Malaysia
Authors: P. H. Tee, S. M. Zamri, K. M. Kasim, S. K. Tiew
Abstract:
This study evaluates the management of osteoporosis in a tertiary care government hospital in Malaysia. As the number of admitted patients having osteoporotic fractures is on the rise, osteoporotic medications are an increasing financial burden to government hospitals because they account for half of the orthopedic budget and expenditure. Comprehensive knowledge among practitioners is important to detect early and avoid this preventable disease and its serious complications. The purpose of this study is to evaluate the awareness, knowledge, and practices in managing osteoporosis among practitioners in Hospital Tengku Ampuan Rahimah (HTAR), Klang. A questionnaire from an overseas study in managing osteoporosis among primary care physicians is adapted to Malaysia’s Clinical Practice Guideline of Osteoporosis 2012 (revised 2015) and international guidelines were distributed to all orthopedic practitioners in HTAR Klang (including surgeons, orthopedic medical officers), endocrinologists, rheumatologists and geriatricians. The participants were evaluated on their expertise in the diagnosis, prevention, treatment decision and medications for osteoporosis. Collected data were analyzed for all descriptive and statistical analyses as appropriate. All 45 participants responded to the questionnaire. Participants scored highest on expertise in prevention, followed by diagnosis, treatment decision and lastly, medication. Most practitioners stated that own-initiated continuing professional education from articles and books was the most effective way to update their knowledge, followed by attendance in conferences on osteoporosis. This study confirms the importance of comprehensive training and education regarding osteoporosis among tertiary care physicians and surgeons, predominantly in pharmacotherapy, to deliver wholesome care for osteoporotic patients.
Keywords: Awareness, knowledge, osteoporosis, practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705636 Mechanical Qualification Test Campaign on the Demise Observation Capsule
Authors: B. Tiseo, V. Quaranta, G. Bruno, R. Gardi, T. Watts, S. Dussy
Abstract:
This paper describes the qualification test campaign performed on the Demise Observation Capsule DOC-EQM as part of the Future Launch Preparatory Program FLPP3. The mechanical environment experienced during launch ascent and separation phase was first identified and then replicated in terms of sine, random and shock vibration. The loads identification is derived by selecting the worst possible case. Vibration and shock qualification test performed at CIRA Space Qualification laboratory is herein described. Mechanical fixtures’ design and validation, carried out by means of FEM, is also addressed due to its fundamental role in the vibrational test campaign. The Demise Observation Capsule (DOC) successfully passed the qualification test campaign. Functional test and resonance search have not been point any fault and damages of the capsule.
Keywords: Capsule, demise, DOC, launch environment, Re-Entry, qualification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579635 Fire Spread Simulation Tool for Cruise Vessels
Authors: Erik Hedin, Lars Strandén, Johannes Lundsten
Abstract:
In 2002 an amendment to SOLAS opened for lightweight material constructions in vessels if the same fire safety as in steel constructions could be obtained. FISPAT (FIreSPread Analysis Tool) is a computer application that simulates fire spread and fault injection in cruise vessels and identifies fire sensitive areas. It was developed to analyze cruise vessel designs and provides a method to evaluate network layout and safety of cruise vessels. It allows fast, reliable and deterministic exhaustive simulations and presents the result in a graphical vessel model. By performing the analysis iteratively while altering the cruise vessel design it can be used along with fire chamber experiments to show that the lightweight design can be as safe as a steel construction and that SOLAS regulations are fulfilled.Keywords: Fire spread, network, safety, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416634 Single and Multiple Sourcing in the Auto-Manufacturing Industry
Authors: Sung Ho Ha, Eun Kyoung Kwon, Jong Sik Jin, Hyun Sun Park
Abstract:
This article outlines a hybrid method, incorporating multiple techniques into an evaluation process, in order to select competitive suppliers in a supply chain. It enables a purchaser to do single sourcing and multiple sourcing by calculating a combined supplier score, which accounts for both qualitative and quantitative factors that have impact on supply chain performance.Keywords: Analytic hierarchy process, Data envelopment analysis, Neural network, Supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661633 Sustainable Cities: Viability of a Hybrid Aeroponic/Nutrient Film Technique System for Cultivation of Tomatoes
Authors: D. Dannehl, Z. Taylor, J. Suhl, L. Miranda, R., Ulrichs, C., Salazar, E. Fitz-Rodriguez, I. Lopez-Cruz, A. Rojano-Aguilar, G. Navas-Gomez, U. Schmidt
Abstract:
Growing environmental and sustainability concerns have driven continual modernization of horticultural practices, especially for urban farming. Controlled environment and soilless production methods are increasing in popularity because of their efficient resource use and intensive cropping capabilities. However, some popular substrates used for hydroponic cultivation, particularly rock wool, represent a large environmental burden in regard to their manufacture and disposal. Substrate-less hydroponic systems are effective in producing short cropping cycle plants such as lettuce or herbs, but less information is available for the production of plants with larger root-systems and longer cropping times. Here, we investigated the viability of a hybrid aeroponic/nutrient film technique (AP/NFT) system for the cultivation of greenhouse tomatoes (Solanum lycopersicum ‘Panovy’). The plants grown in the AP/NFT system had a more compact phenotype, accumulated more Na+ and less P and S than the rock wool grown counterparts. Due to forced irrigation interruptions, we propose that the differences observed were cofounded by the differing severity of water-stress for plants with and without substrate. They may also be caused by a higher root zone temperature predominant in plants exposed to AP/NFT. However, leaf area, stem diameter, and number of trusses did not differ significantly. The same was found for leaf pigments and plant photosynthetic efficiency. Overall, the AP/NFT system appears to be viable for the production of greenhouse tomato, enabling the environment to be relieved by way of lessening rock wool usage.
Keywords: Aeroponic/nutrient film technique, greenhouse, nutrient dynamic, soilless culture, urban farming, waste reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828632 Direct Transient Stability Assessment of Stressed Power Systems
Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara
Abstract:
This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.
Keywords: Power system, Transient stability, Critical trajectory method, Energy function method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124631 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method
Authors: V. Rashtchi, R. Aghmasheh
Abstract:
Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.
Keywords: broken bar, PSO, fault detection, SCIM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717630 Analytic on Various Grounding Configurations in Uniform Layer Soil
Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror
Abstract:
The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.
Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502629 Faults Forecasting System
Authors: Hanaa E.Sayed, Hossam A. Gabbar, Shigeji Miyazaki
Abstract:
This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.Keywords: Bayesian Techniques, Faults Detection, Forecasting techniques, Multivariate Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552628 The Process of Crisis: Model of Its Development in the Organization
Authors: M. Mikušová
Abstract:
The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.
Keywords: Crisis, management, model, organization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134627 Rigorous Electromagnetic Model of Fourier Transform Infrared (FT-IR) Spectroscopic Imaging Applied to Automated Histology of Prostate Tissue Specimens
Authors: Rohith K Reddy, David Mayerich, Michael Walsh, P Scott Carney, Rohit Bhargava
Abstract:
Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that provides both chemically and spatially resolved information. The rich chemical content of data may be utilized for computer-aided determinations of structure and pathologic state (cancer diagnosis) in histological tissue sections for prostate cancer. FT-IR spectroscopic imaging of prostate tissue has shown that tissue type (histological) classification can be performed to a high degree of accuracy [1] and cancer diagnosis can be performed with an accuracy of about 80% [2] on a microscopic (≈ 6μm) length scale. In performing these analyses, it has been observed that there is large variability (more than 60%) between spectra from different points on tissue that is expected to consist of the same essential chemical constituents. Spectra at the edges of tissues are characteristically and consistently different from chemically similar tissue in the middle of the same sample. Here, we explain these differences using a rigorous electromagnetic model for light-sample interaction. Spectra from FT-IR spectroscopic imaging of chemically heterogeneous samples are different from bulk spectra of individual chemical constituents of the sample. This is because spectra not only depend on chemistry, but also on the shape of the sample. Using coupled wave analysis, we characterize and quantify the nature of spectral distortions at the edges of tissues. Furthermore, we present a method of performing histological classification of tissue samples. Since the mid-infrared spectrum is typically assumed to be a quantitative measure of chemical composition, classification results can vary widely due to spectral distortions. However, we demonstrate that the selection of localized metrics based on chemical information can make our data robust to the spectral distortions caused by scattering at the tissue boundary.Keywords: Infrared, Spectroscopy, Imaging, Tissue classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634626 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.
Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975625 Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays
Authors: Mohd Iqbal Ridwan, Kerk Lee Yen, Aminuddin Musa, Bahisham Yunus
Abstract:
Protective relays are components of a protection system in a power system domain that provides decision making element for correct protection and fault clearing operations. Failure of the protection devices may reduce the integrity and reliability of the power system protection that will impact the overall performance of the power system. Hence it is imperative for power utilities to assess the reliability of protective relays to assure it will perform its intended function without failure. This paper will discuss the application of reliability analysis using statistical method called Life Data Analysis in Tenaga Nasional Berhad (TNB), a government linked power utility company in Malaysia, namely Transmission Division, to assess and evaluate the reliability of numerical overcurrent protective relays from two different manufacturers.Keywords: Life data analysis, Protective relays, Reliability, Weibull Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3981624 States Estimation and Fault Detection of a Doubly Fed Induction Machine by Moving Horizon Estimation
Authors: A. T. Boum, L. Bitjoka, N. N. Léandre, S. Bennet
Abstract:
This paper presents the estimation of the key parameters of a double fed induction machine (DFIM) by the use of the moving horizon estimator (MHE) for control and monitoring purpose. A study was conducted on the behavior of this observer in the presence of some faults which can occur during the operation of the machine. In the first case a stator phase has been suppressed. In the second case the rotor resistance has been multiplied by a factor. The results show a good estimation of different parameters such as rotor flux, rotor speed, stator current with a very small estimation error. The robustness of the observer was also tested in the practical case of DFIM by using another model different from the real one at a constant close. The very small estimation error makes the MHE a good software sensor candidate for monitoring purpose for the DFIM.
Keywords: Doubly fed induction machine, moving horizon estimator parameters’ estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768623 Revival of the Modern Wing Sails for the Propulsion of Commercial Ships
Authors: Pravesh Chandra Shukla, Kunal Ghosh
Abstract:
Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.Keywords: Commercial ships, Wind diesel hybrid system, Wing-sail, Wind direction, Wind velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3967622 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)
Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi
Abstract:
Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3380621 Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occured in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.
Keywords: Water Seepage, Amirkabir Tunnel, Analytical Method, DEM, SGR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3959620 Fuzzy Neuro Approach to Busbar Protection; Design and Implementation
Authors: M. R. Aghaebrahimi, H. Khorashadi Zadeh
Abstract:
This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.
Keywords: Busbar protection, fuzzy neuro, Ct saturation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866619 An Enterprise Intelligent System Development and Solution Framework
Authors: Rajendra M. Sonar
Abstract:
The recent trend has been using hybrid approach rather than using a single intelligent technique to solve the problems. In this paper, we describe and discuss a framework to develop enterprise solutions that are backed by intelligent techniques. The framework not only uses intelligent techniques themselves but it is a complete environment that includes various interfaces and components to develop the intelligent solutions. The framework is completely Web-based and uses XML extensively. It can work like shared plat-form to be accessed by multiple developers, users and decision makers.Keywords: Intelligent System Development Framework, WebbasedIntelligent Systems, Retail Banking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015618 Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO
Authors: M. H. Moradi, S. M. Moosavi, A. R. Reisi
Abstract:
The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).Keywords: Power system stabilizer, C-Catfish PSO, ITAE objective function, Power system control, Multi-machine power system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416617 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.
Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 528616 Heat Generation Rate and Computational Simulation for Li-Ion Battery Module
Authors: Ravichandra R., Srithar Rajoo, Tan Lit Wen
Abstract:
In recent years Li-Ion batteries getting more attention among the Electrical Vehicles (EV) and Hybrid Electrical Vehicles (HEV) energy storage. Li-Ion has shown extended power density and light weight compared to other batteries readily available in the market. One of the major drawbacks in Li-Ion batteries is their sensitivity to the temperature. If the working temperature is beyond the limit, that could affect seriously on the durability and performance of Li-Ion battery. Thus Battery Thermal Management (BTM) is the most essential in adapting Li-Ion battery to the EVs and HEVs.
Keywords: Li-Ion battery, HEV/EV, battery thermal management, heat generation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5936615 Software Maintenance Severity Prediction with Soft Computing Approach
Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581614 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.
Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442613 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012612 A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator
Authors: Phannee Saengkaew, Weerasak Ussawawongaraya, Sasiphan Khaweerat, Supagorn Rugmai, Sirisart Ouajai, Jiraporn Luengviriya, Sakuntam Sanorpim, Manop Tirarattanasompot, Somboon Rhianphumikarakit
Abstract:
We present a preliminary x-ray study on human-hair microstructures for a health-state indicator, in particular a cancer case. As an uncomplicated and low-cost method of x-ray technique, the human-hair microstructure was analyzed by wide-angle x-ray diffractions (XRD) and small-angle x-ray scattering (SAXS). The XRD measurements exhibited the simply reflections at the d-spacing of 28 Å, 9.4 Å and 4.4 Å representing to the periodic distance of the protein matrix of the human-hair macrofibrous and the diameter and the repeated spacing of the polypeptide alpha helixes of the photofibrils of the human-hair microfibrous, respectively. When compared to the normal cases, the unhealthy cases including to the breast- and ovarian-cancer cases obtained higher normalized ratios of the x-ray diffracting peaks of 9.4 Å and 4.4 Å. This likely resulted from the varied distributions of microstructures by a molecular alteration. As an elemental analysis by x-ray fluorescence (XRF), the normalized quantitative ratios of zinc(Zn)/calcium(Ca) and iron(Fe)/calcium(Ca) were determined. Analogously, both Zn/Ca and Fe/Ca ratios of the unhealthy cases were obtained higher than both of the normal cases were. Combining the structural analysis by XRD measurements and the elemental analysis by XRF measurements exhibited that the modified fibrous microstructures of hair samples were in relation to their altered elemental compositions. Therefore, these microstructural and elemental analyses of hair samples will be benefit to associate with a diagnosis of cancer and genetic diseases. This functional method would lower a risk of such diseases by the early diagnosis. However, the high-intensity x-ray source, the highresolution x-ray detector, and more hair samples are necessarily desired to develop this x-ray technique and the efficiency would be enhanced by including the skin and fingernail samples with the human-hair analysis.Keywords: Human-hair analysis, XRD, SAXS, breast cancer, health-state indicator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574