Search results for: Boundary layer Blasius equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2504

Search results for: Boundary layer Blasius equation

1694 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries

Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos

Abstract:

Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.

Keywords: Ceramics, microstructure, electrochemical measurements, energy storage, transmission electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
1693 Electric Field Analysis and Experimental Evaluation of 400 kV Silicone Composite Insulator

Authors: M. Nageswara Rao, N. Sumathi, V. S. N. K. Chaitanya

Abstract:

In electrical power system, high voltage insulators are necessary for consistent performance. All insulators are exposed to different mechanical and electrical stresses. Mechanical stresses occur due to various loads such as wind load, hardware and conductors weight. Electrical stresses are due to over voltages and operating voltages. The performance analysis of polymer insulators is an essential, as most of the electrical utility companies are employing polymer insulators for new and updated transmission lines. In this paper, electric field is analyzed for 400 kV silicone (SiR) composite insulator by COULOMB 3D software based on boundary element method. The field results are compared with EPRI reference values. Our results proved that values at critical regions are very less compared to EPRI reference values. And also experimentally 400 kV single V suspension string is evaluated as per IEC standards.

Keywords: Electric field analysis, silicone composite insulator, boundary element method, RIV, Corona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1692 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation

Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint

Abstract:

Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.

Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1691 Resilient Modulus and Deformation Responses of Waste Glass in Flexible Pavement System

Authors: M. Al-Saedi, A. Chegenizadeh, H. Nikraz

Abstract:

Experimental investigations are conducted to assess a layered structure of glass (G) - rock (R) blends under the impact of repeated loading. Laboratory tests included sieve analyses, modified compaction test and repeated load triaxial test (RLTT) is conducted on different structures of stratified GR samples to reach the objectives of this study. Waste materials are such essential components in the climate system, and also commonly used in minimising the need for natural materials in many countries. Glass is one of the most widely used groups of waste materials which have been extensively using in road applications. Full range particle size and colours of glass are collected and mixed at different ratios with natural rock material trying to use the blends in pavement layers. Whole subsurface specimen sequentially consists of a single layer of R and a layer of G-R blend. 12G/88R and 45G/55R mix ratios are employed in this research, the thickness of G-R layer was changed, and the results were compared between the pure rock and the layered specimens. The relations between resilient module (Mr) and permanent deformation with sequence number are presented. During the earlier stages of RLTT, the results indicated that the 45G/55R specimen shows higher moduli than R specimen.

Keywords: Rock base course, layered structure, glass, resilient modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
1690 The Study of the Discrete Risk Model with Random Income

Authors: Peichen Zhao

Abstract:

In this paper, we extend the compound binomial model to the case where the premium income process, based on a binomial process, is no longer a linear function. First, a mathematically recursive formula is derived for non ruin probability, and then, we examine the expected discounted penalty function, satisfy a defect renewal equation. Third, the asymptotic estimate for the expected discounted penalty function is then given. Finally, we give two examples of ruin quantities to illustrate applications of the recursive formula and the asymptotic estimate for penalty function.

Keywords: Discounted penalty function, compound binomial process, recursive formula, discrete renewal equation, asymptotic estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
1689 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC

Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos

Abstract:

In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.

Keywords: Oscillating water column, Shallow flow, Waveenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1688 Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region

Authors: Mohsen Hayati, Yazdan Shirvany

Abstract:

In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems.

Keywords: Artificial neural networks, Forecasting, Multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758
1687 Parametric Vibrations of Periodic Shells

Authors: B. Tomczyk, R. Mania

Abstract:

Thin linear-elastic cylindrical circular shells having a micro-periodic structure along two directions tangent to the shell midsurface (biperiodic shells) are object of considerations. The aim of this paper is twofold. First, we formulate an averaged nonasymptotic model for the analysis of parametric vibrations or dynamical stability of periodic shells under consideration, which has constant coefficients and takes into account the effect of a cell size on the overall shell behavior (a length-scale effect). This model is derived employing the tolerance modeling procedure. Second we apply the obtained model to derivation of frequency equation being a starting point in the analysis of parametric vibrations. The effect of the microstructure length oh this frequency equation is discussed.

Keywords: Micro-periodic shells, mathematical modeling, length-scale effect, parametric vibrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
1686 Vibration of FGM Cylindrical Shells under Effect Clamped-simply Support Boundary Conditions using Hamilton's Principle

Authors: M.R.Isvandzibaei, E.Bidokh, M.R.Alinaghizadeh, A.Nasirian, A.Moarrefzadeh

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
1685 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

Authors: Jurij Tasinkiewicz

Abstract:

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wavebeam both in elevation and azimuth. In this paper a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Keywords: Beamforming, transducer array, BIS-expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1684 Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru

Abstract:

Carriers scattering in the inversion channel of n- MOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures.

Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Effective Electric Field and Effective Mobility Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
1683 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Keywords: Cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1682 Investigating the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery

Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.

Keywords: CFD, heart, simulation, OpenFOAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
1681 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine

Abstract:

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Keywords: Coefficient of performance, ejector refrigeration system, exergy efficiency, heat exchangers modeling, moving boundary method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
1680 Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, Check valve, Micro pump, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
1679 A Special Algorithm to Approximate the Square Root of Positive Integer

Authors: Hsian Ming Goo

Abstract:

The paper concerns a special approximate algorithm of the square root of the specific positive integer, which is built by the use of the property of positive integer solution of the Pell’s equation, together with using some elementary theorems of matrices, and then takes it to compare with general used the Newton’s method and give a practical numerical example and error analysis; it is unexpected to find its special property: the significant figure of the approximation value of the square root of positive integer will increase one digit by one. It is well useful in some occasions.

Keywords: Special approximate algorithm, square root, Pell’s equation, Newton’s method, error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
1678 Genetic Algorithm for Solving Non-Convex Economic Dispatch Problem

Authors: Navid Javidtash, Abdolmohamad Davodi, Mojtaba Hakimzadeh, Abdolreza Roozbeh

Abstract:

Economic dispatch (ED) is considered to be one of the key functions in electric power system operation. This paper presents a new hybrid approach based genetic algorithm (GA) to economic dispatch problems. GA is most commonly used optimizing algorithm predicated on principal of natural evolution. Utilization of chaotic queue with GA generates several neighborhoods of near optimal solutions to keep solution variation. It could avoid the search process from becoming pre-mature. For the objective of chaotic queue generation, utilization of tent equation as opposed to logistic equation results in improvement of iterative speed. The results of the proposed approach were compared in terms of fuel cost, with existing differential evolution and other methods in literature.

Keywords: Economic Dispatch(ED), Optimization, Fuel Cost, Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
1677 A Critics Study of Neural Networks Applied to ion-Exchange Process

Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle

Abstract:

This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.

Keywords: Copper, ion-exchange process, neural networks, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1676 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel

Authors: Aptullah Karakaş, Murat Baydoğan

Abstract:

In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes, and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 hardness of Vickers (HV) and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.

Keywords: Aluminum alloys, coating, hot-dip aluminizing, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60
1675 Error Estimates for Calculated Glomerular Filtration Rates

Authors: Simon Brown

Abstract:

Glomerular filtration rate (GFR) is a measure of kidney function. It is usually estimated from serum concentrations of cystatin C or creatinine although there has been considerable debate in the literature about (i) the best equation to use and (ii) the variability in the correlation between the concentrations of creatinine and cystatin C. The equations for GFR can be written in a general form and from these I calculate the error of the GFR estimates associated with analyte measurement error. These show that the error of the GFR estimates is such that it is not possible to distinguish between the equations over much of the concentration range of either analyte. The general forms of the equations are also used to derive an expression for the concentration of cystatin C as a function of the concentration of creatinine. This equation shows that these analyte concentrations are not linearly related. Clinical reports of cystatin C and creatinine concentration are consistent with the expression derived.

Keywords: creatinine, cystatin C, error analysis, glomerularfiltration rate, measurement error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
1674 Elastic-Plastic Contact Analysis of Single Layer Solid Rough Surface Model using FEM

Authors: A. Megalingam, M.M.Mayuram

Abstract:

Evaluation of contact pressure, surface and subsurface contact stresses are essential to know the functional response of surface coatings and the contact behavior mainly depends on surface roughness, material property, thickness of layer and the manner of loading. Contact parameter evaluation of real rough surface contacts mostly relies on statistical single asperity contact approaches. In this work, a three dimensional layered solid rough surface in contact with a rigid flat is modeled and analyzed using finite element method. The rough surface of layered solid is generated by FFT approach. The generated rough surface is exported to a finite element method based ANSYS package through which the bottom up solid modeling is employed to create a deformable solid model with a layered solid rough surface on top. The discretization and contact analysis are carried by using the same ANSYS package. The elastic, elastoplastic and plastic deformations are continuous in the present finite element method unlike many other contact models. The Young-s modulus to yield strength ratio of layer is varied in the present work to observe the contact parameters effect while keeping the surface roughness and substrate material properties as constant. The contacting asperities attain elastic, elastoplastic and plastic states with their continuity and asperity interaction phenomena is inherently included. The resultant contact parameters show that neighboring asperity interaction and the Young-s modulus to yield strength ratio of layer influence the bulk deformation consequently affect the interface strength.

Keywords: Asperity interaction, finite element method, rough surface contact, single layered solid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
1673 Analysis of the Coupled Stretching Bending Problem of Stiffened Plates by a BEM Formulation Based on Reissner's Hypothesis

Authors: Gabriela R. Fernandes, Danilo H. Konda, Luiz C. F. Sanches

Abstract:

In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner?s hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.

Keywords: Boundary elements, Building floor structures, Platebending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1672 Gas-Solid Nitrocarburizing of Steels: Kinetic Modeling and Experimental Validation

Authors: L. Torchane

Abstract:

The study is devoted to define the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3- Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.

Keywords: Gaseous Nitrocarburizing, Kinetic Model, Diffusion, Layer Growth Kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1671 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal

Abstract:

In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.

Keywords: Electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, Non-Newtonian power-law fluids, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
1670 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: Fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
1669 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, Thermophoresis, Diffusiophoresis, Brownian motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
1668 Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm for Multi Hop Mobile Ad Hoc Networks

Authors: Y. Harold Robinson, E. Golden Julie, S. Balaji

Abstract:

The scheduling based routing scheme is presented in this paper to avoid link failure. The main objective of this system is to introduce a cross-layer protocol framework that integrates routing with priority-based traffic management and distributed transmission scheduling. The reservation scheme is based on ID. The presented scheme guarantees that bandwidth reserved time slot is used by another packet in which end-to-end reservation is achieved. The Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm is presented to allocate channels efficiently. The experimental results show that the presented schemes performed well in various parameters compared to existing methods.

Keywords: Integrated routing, scheduling, MAC layer, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
1667 Suggestion of Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Finite Difference Analysis, Development and Clinical Trials

Authors: Won-Pil Park, Qyoun-Jung Lee, Dae-Gon Woo, Chang-Yong Ko, Eun-Geun Kim, Dohyung Lim, Yong-Heum Lee, Tae-Min Shin, Han-Sung Kim

Abstract:

The disaster from functional gastrointestinal disorders has detrimental impact on the quality of life of the effected population and imposes a tremendous social and economic burden. There are, however, rare diagnostic methods for the functional gastrointestinal disorders. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Objective of current study is, therefore, identify feasibility of a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid model) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. The FD analysis was then based on elastic ultrasound theory. Validation of the model was performed via comparison of the characteristic of the ultrasonic responses predicted by FD analysis with that determined from the actual specimens for the normal and rigid conditions. Based on the results from FD analysis, ultrasound system for diagnosis of the functional gastrointestinal disorders was developed and clinically tested via application of it to 40 human subjects with/without functional gastrointestinal disorders who were assigned to Normal and Patient Groups. The FD models were favorably validated. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasonic reflective signal in the rigid models (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal model (0.1±0.2 Vp-p). Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3 Vp-p) were generally higher than those in normal group (0.1±0.2 Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These findings suggest that our customized ultrasound system using the ultrasonic reflective signal may be helpful to the diagnosis of the functional gastrointestinal disorders.

Keywords: Finite Difference (FD) Analysis, FunctionalGastrointestinal Disorders, Gastrointestinal Tract, UltrasonicResponses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1666 A Study of Relationship between WBGT and Relative Humidity to Worker Performance

Authors: A.R. Ismail, M. R. A. Rani, Z. K. M. Makhbul, M. J. M. Nor, M. N. A. Rahman

Abstract:

The environmental factors such as temperature and relative humidity are very contribute to the effect of comfort, health, performance and worker productivity. To ensure an ergonomics work environment, it is possible to require a specific attention especially in industries. The aim of this study is to show the effect of temperature and relative humidity on worker productivity in automotive industry by taking a workstation in an automotive plant as the location to conduct the study. From the analysis of the data, there were relationship between temperature and relative humidity on worker productivity. Mathematical equation to represent the relationship between temperatures and relative humidity on the production rate is modelled. From the equation model, the production rate for the workstation can be predicted base on the value of temperature and relative humidity.

Keywords: WBGT, Relative Humidity, Comfort, Productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
1665 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings

Authors: Abdurrahim Dal, Tuncay Karaçay

Abstract:

Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.

Keywords: Air bearing, internal pressure, Reynold’s equation, rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129