Search results for: nonlinear oscillator
331 Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li
Abstract:
Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.
Keywords: anisotropic diffusion, coordinate transformationdirectional derivatives, edge enhancement, hyperbolic tangentfunction, image denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813330 Therapeutic Product Preparation Bioprocess Modeling
Authors: Mihai Caramihai, Irina Severin, Ana Aurelia Chirvase, Adrian Onu, Cristina Tanase, Camelia Ungureanu
Abstract:
An immunomodulator bioproduct is prepared in a batch bioprocess with a modified bacterium Pseudomonas aeruginosa. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The optimal bioprocess parameters were determined: temperature – 37 0C, agitation speed - 300 rpm, aeration rate – 40 L/min, pressure – 0.5 bar, Dow Corning Antifoam M-max. 4 % of the medium volume, duration - 6 hours. This kind of bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying. The aim of the paper is to present (by comparison) different models based on experimental data. The analysis criteria were modeling error and convergence rate. The estimated values and the modeling analysis were done by using the Table Curve 2D. The preliminary conclusions indicate Andrews-s model with a maximum specific growth rate of the bacterium in the range of 0.8 h-1.Keywords: bioprocess modeling, Pseudomonas aeruginosa, kinetic models,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706329 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation
Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi
Abstract:
This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.
Keywords: Fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577328 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels
Authors: Xuan Sun, Mingbo Tong
Abstract:
To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.
Keywords: Stiffened, Low-velocity, Impact, Abaqus, Impact Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523327 Evaluation of Behavior Factor for Steel Moment-Resisting Frames
Authors: Taïeb Branci, Djamal Yahmi, Abdelhamid Bouchair, Eric Fourneley
Abstract:
According to current seismic codes the structures are calculated using the capacity design procedure based on the concept of shear at the base depending on several parameters including behavior factor which is considered to be the most important parameter. The behavior factor allows designing the structure when it is at its ultimate limit state taking into account its energy dissipation through its plastic deformation. The aim of the present study is to assess the basic parameters on which is composed the behavior factor among them the reduction factor due to ductility, and those due to redundancy and the overstrength for steel moment-resisting frames of different heights and regular configuration. Analyses are conducted on these frames using the nonlinear static method where the effect of some parameters on the behavior factor, such as the number of stories and the number of spans, are taken into account. The results show that the behavior factor is rather sensitive to the variation of the number of stories and bays.
Keywords: Behavior, code, frame, ductility, overstrength, redundancy, plastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3334326 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE
Authors: Rida B. Arieby, Hameed N. Hameed
Abstract:
In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.
Keywords: Strain rate jump tests, Volume Strain, High Density Polyethylene, Large strain, Thermodynamics approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123325 Region-Based Image Fusion with Artificial Neural Network
Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng
Abstract:
For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258324 Design of Active Power Filters for Harmonics on Power System and Reducing Harmonic Currents
Authors: Düzgün Akmaz, Hüseyin Erişti
Abstract:
In the last few years, harmonics have been occurred with the increasing use of nonlinear loads, and these harmonics have been an ever increasing problem for the line systems. This situation importantly affects the quality of power and gives large losses to the network. An efficient way to solve these problems is providing harmonic compensation through parallel active power filters. Many methods can be used in the control systems of the parallel active power filters which provide the compensation. These methods efficiently affect the performance of the active power filters. For this reason, the chosen control method is significant. In this study, Fourier analysis (FA) control method and synchronous reference frame (SRF) control method are discussed. These control methods are designed for both eliminate harmonics and perform reactive power compensation in MATLAB/Simulink pack program and are tested. The results have been compared for each two methods.
Keywords: Harmonics, Harmonic compensation, Parallel active power filters, Power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3288323 Remarks on Energy Based Control of a Nonlinear, Underactuated, MIMO and Unstable Benchmark
Authors: Guangyu Liu
Abstract:
In the last decade, energy based control theory has undergone a significant breakthrough in dealing with underactated mechanical systems with two successful and similar tools, controlled Lagrangians and controlled Hamiltanians (IDA-PBC). However, because of the complexity of these tools, successful case studies are lacking, in particular, MIMO cases. The seminal theoretical paper of controlled Lagrangians proposed by Bloch and his colleagues presented a benchmark example–a 4 d.o.f underactuated pendulum on a cart but a detailed and completed design is neglected. To compensate this ignorance, the note revisit their design idea by addressing explicit control functions for a similar device motivated by a vector thrust body hovering in the air. To the best of our knowledge, this system is the first MIMO, underactuated example that is stabilized by using energy based tools at the courtesy of the original design idea. Some observations are given based on computer simulation.
Keywords: Controlled Lagrangian, Energy Shaping, Spherical Inverted Pendulum, Controlled Hamiltonian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374322 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames
Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi
Abstract:
The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.
Keywords: EBFs, replaceable link, earthquake disaster, reduced section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465321 Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO
Authors: M. H. Moradi, S. M. Moosavi, A. R. Reisi
Abstract:
The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).Keywords: Power system stabilizer, C-Catfish PSO, ITAE objective function, Power system control, Multi-machine power system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416320 Design of a Three Phase Active Power Filter with Sliding Mode Control and Energy Feedback
Authors: M. Nayeripour, T. Niknam
Abstract:
Nonlinear and unbalance loads in three phase networks create harmonics and losses. Active and passive filters are used for elimination or reduction of these effects. Passive filters have some limitations. For example, they are designed only for a specific frequency and they may cause to resonance in the network at the point of common coupling. The other drawback of a passive filter is that the sizes of required elements are normally large. The active filter can improve some of limitations of passive filter for example; they can eliminate more than one harmonic and don't cause resonance in the network. In this paper inverter analysis have been done simultaneously in three phase and the RL impedance of the line have been considered. A sliding mode control based on energy feedback of capacitors is employed in the design with this method, the dynamic speed of the filter is improved effectively and harmonics and load unbalance is compensating quickly.Keywords: Shunt active filter, harmonic, inverter, sliding mode control, energy feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845319 Internal Loading Distribution in Statically Loaded Ball Bearings, Subjected to a Combined Radial and Thrust Load, Including the Effects of Temperature and Fit
Authors: Mário C. Ricci
Abstract:
A new, rapidly convergent, numerical procedure for internal loading distribution computation in statically loaded, singlerow, angular-contact ball bearings, subjected to a known combined radial and thrust load, which must be applied so that to avoid tilting between inner and outer rings, is used to find the load distribution differences between a loaded unfitted bearing at room temperature, and the same loaded bearing with interference fits that might experience radial temperature gradients between inner and outer rings. For each step of the procedure it is required the iterative solution of Z + 2 simultaneous nonlinear equations – where Z is the number of the balls – to yield exact solution for axial and radial deflections, and contact angles.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method, Temperature, Fit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786318 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process
Authors: P. Georgieva, S. Feyo de Azevedo
Abstract:
This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838317 A Real Time Collision Avoidance Algorithm for Mobile Robot based on Elastic Force
Authors: Kyung Hyun, Choi, Minh Ngoc, Nong, M. Asif Ali, Rehmani
Abstract:
This present paper proposes the modified Elastic Strip method for mobile robot to avoid obstacles with a real time system in an uncertain environment. The method deals with the problem of robot in driving from an initial position to a target position based on elastic force and potential field force. To avoid the obstacles, the robot has to modify the trajectory based on signal received from the sensor system in the sampling times. It was evident that with the combination of Modification Elastic strip and Pseudomedian filter to process the nonlinear data from sensor uncertainties in the data received from the sensor system can be reduced. The simulations and experiments of these methods were carried out.Keywords: Collision avoidance, Avoidance obstacle, Elastic Strip, Real time collision avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004316 Significance of Splitting Method in Non-linear Grid system for the Solution of Navier-Stokes Equation
Abstract:
Solution to unsteady Navier-Stokes equation by Splitting method in physical orthogonal algebraic curvilinear coordinate system, also termed 'Non-linear grid system' is presented. The linear terms in Navier-Stokes equation are solved by Crank- Nicholson method while the non-linear term is solved by the second order Adams-Bashforth method. This work is meant to bring together the advantage of Splitting method as pressure-velocity solver of higher efficiency with the advantage of consuming Non-linear grid system which produce more accurate results in relatively equal number of grid points as compared to Cartesian grid. The validation of Splitting method as a solution of Navier-Stokes equation in Nonlinear grid system is done by comparison with the benchmark results for lid driven cavity flow by Ghia and some case studies including Backward Facing Step Flow Problem.
Keywords: Navier-Stokes, 'Non-linear grid system', Splitting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528315 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477314 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060313 Finite Element Modeling of Heat and Moisture Transfer in Porous Material
Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume
Abstract:
This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280312 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012311 Designing a Single-Floor Structure for the Control Room of a Petroleum Refinery and Assessing the Resistance of Such a Structure against Gas Explosion Load
Authors: Amin Lotfi Eghlim, Mehran pourgholi
Abstract:
Explosion occurs due to sudden release of energy. Common examples of explosion include chemical, atomic, heat, and pressure tank (due to ignition) explosions. Petroleum, gas, and petrochemical industries operations are threatened by natural risks and processes. Fires and explosions are the greatest process risks which cause financial damages. This study aims at designing a single-floor structure for the control room of a petroleum refinery to be resistant against gas explosion loads, and the information related to the structure specifications have been provided regarding the fact that the structure is made on the ground's surface. In this research, the lateral stiffness of single pile is calculated by SPPLN.FOR computer program, and its value for 13624 KN/m single pile has been assessed. The analysis used due to the loading conditions, is dynamic nonlinear analysis with direct integration method.Keywords: Gas Explosion Load, Petroleum Refinery, Single-Floor Structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258310 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm
Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho
Abstract:
Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.
Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988309 Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media
Authors: A.Memari
Abstract:
In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.
Keywords: Steady flow; Walter's B' Fluid;, vertical channel;porous media, Homotopy Perturbation Method (HPM), Numerical Solution (NS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979308 Posture Stabilization of Kinematic Model of Differential Drive Robots via Lyapunov-Based Control Design
Abstract:
In this paper, the problem of posture stabilization for a kinematic model of differential drive robots is studied. A more complex model of the kinematics of differential drive robots is used for the design of stabilizing control. This model is formulated in terms of the physical parameters of the system such as the radius of the wheels, and velocity of the wheels are the control inputs of it. In this paper, the framework of Lyapunov-based control design has been used to solve posture stabilization problem for the comprehensive model of differential drive robots. The results of the simulations show that the devised controller successfully solves the posture regulation problem. Finally, robustness and performance of the controller have been studied under system parameter uncertainty.Keywords: Differential drive robots, nonlinear control, Lyapunov-based control design, posture regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797307 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.
Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407306 Optimal Route Policy in Air Traffic Control with Competing Airlines
Authors: Siliang Wang, Minghui Wang
Abstract:
This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.
Keywords: Air traffic control, Nonlinear programming, Marketmechanism, Route policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822305 Finite Element Dynamic Analysis of Composite Structure Cracks
Authors: Omid A. Zargar
Abstract:
Material damages dynamic analysis is difficult to deal with different material geometry and mechanism. In addition, it is difficult to measure the dynamic behavior of cracks, debond and delamination inside the material. Different simulation methods are developed in recent years for different physical features of mechanical systems like vibration and acoustic. Nonlinear fractures are analyzed and identified for different locations in this paper. The main idea of this work is to perform dynamic analysis on different types of materials (from normal homogeneous material to complex composite laminates). Technical factors like cracks, voids, interfaces and the damages’ locations are evaluated. In this project the modal analysis is performed on different types of materials. The results could be helpful in finding modal frequencies, natural frequencies, Time domain and fast Fourier transform (FFT) in industrial applications.
Keywords: Finite element method, dynamic analysis, vibration and acoustic, composite, crack, delamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654304 Weak Instability in Direct Integration Methods for Structural Dynamics
Authors: Shuenn-Yih Chang, Chiu-Li Huang
Abstract:
Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.Keywords: Dynamic analysis, high frequency, integration method, overshoot, weak instability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672303 A Quantitative Analysis of GSM Air Interface Based on Radiating Columns and Prediction Model
Authors: K. M. Doraiswamy, Lakshminarayana Merugu, B. C. Jinaga
Abstract:
This paper explains the cause of nonlinearity in floor attenuation hither to left unexplained. The performance degradation occurring in air interface for GSM signals is quantitatively analysed using the concept of Radiating Columns of buildings. The signal levels were measured using Wireless Network Optimising Drive Test Tool (E6474A of Agilent Technologies). The measurements were taken in reflected signal environment under usual fading conditions on actual GSM signals radiated from base stations. A mathematical model is derived from the measurements to predict the GSM signal levels in different floors. It was applied on three buildings and found that the predicted signal levels deviated from the measured levels with in +/- 2 dB for all floors. It is more accurate than the prediction models based on Floor Attenuation Factor. It can be used for planning proper indoor coverage in multi storey buildings.Keywords: GSM air interface, nonlinear attenuation, multistory building, radiating columns, ground conduction and floor attenuation factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572302 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation
Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati
Abstract:
In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.Keywords: Carbon nanotubes, vibration control, piezoelectric layers, elastic foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255