Search results for: linear static analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10349

Search results for: linear static analysis

9569 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland

Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli

Abstract:

This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.

Keywords: Analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 651
9568 Stability and Bifurcation Analysis in a Model of Hes1 Selfregulation with Time Delay

Authors: Kejun Zhuang, Hailong Zhu

Abstract:

The dynamics of a delayed mathematical model for Hes1 oscillatory expression are investigated. The linear stability of positive equilibrium and existence of local Hopf bifurcation are studied. Moreover, the global existence of large periodic solutions has been established due to the global bifurcation theorem.

Keywords: Hes1, Hopf bifurcation, time delay, transcriptional repression loop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
9567 Aeroelastic Response for Pure Plunging Motion of a Typical Section Due to Sharp Edged Gust, Using Jones Approximation Aerodynamics

Authors: M. H. Kargarnovin, A. Mamandi

Abstract:

This paper presents investigation effects of a sharp edged gust on aeroelastic behavior and time-domain response of a typical section model using Jones approximate aerodynamics for pure plunging motion. Flutter analysis has been done by using p and p-k methods developed for presented finite-state aerodynamic model for a typical section model (airfoil). Introduction of gust analysis as a linear set of ordinary differential equations in a simplified procedure has been carried out by using transformation into an eigenvalue problem.

Keywords: Aeroelastic response, jones approximation, pure plunging motion, sharp edged gust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
9566 A Linear Use Case Based Software Cost Estimation Model

Authors: Hasan.O. Farahneh, Ayman A. Issa

Abstract:

Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.

Keywords: Metrics, Software Cost Estimation, Use Cases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
9565 Parallel-Distributed Software Implementation of Buchberger Algorithm

Authors: Praloy Kumar Biswas, Prof. Dipanwita Roy Chowdhury

Abstract:

Grobner basis calculation forms a key part of computational commutative algebra and many other areas. One important ramification of the theory of Grobner basis provides a means to solve a system of non-linear equations. This is why it has become very important in the areas where the solution of non-linear equations is needed, for instance in algebraic cryptanalysis and coding theory. This paper explores on a parallel-distributed implementation for Grobner basis calculation over GF(2). For doing so Buchberger algorithm is used. OpenMP and MPI-C language constructs have been used to implement the scheme. Some relevant results have been furnished to compare the performances between the standalone and hybrid (parallel-distributed) implementation.

Keywords: Grobner basis, Buchberger Algorithm, Distributed- Parallel Computation, OpenMP, MPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
9564 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering

Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song

Abstract:

The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.

Keywords: Contour filtering, linear array, photoacoustic tomography, universal back projection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
9563 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis

Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria

Abstract:

This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.

Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2922
9562 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
9561 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen

Abstract:

In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
9560 LQG Flight Control of VTAV for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a linear-quadratic-Gaussian (LQG) flight control procedure for an unmanned helicopter model with vectored thrust configuration. This LQG control for chosen model of VTAV has been verified by simulation of take-off and landing maneuvers using software package Simulink and demonstrated good performance for fast flight stabilization of model, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: Linear-Quadratic-Gaussian (LQG) controller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
9559 Constrained Particle Swarm Optimization of Supply Chains

Authors: András Király, Tamás Varga, János Abonyi

Abstract:

Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.

Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
9558 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger

Abstract:

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
9557 Balanced and Unbalanced Voltage Sag Mitigation Using DSTATCOM with Linear and Nonlinear Loads

Authors: H. Nasiraghdam, A. Jalilian

Abstract:

DSTATCOM is one of the equipments for voltage sag mitigation in power systems. In this paper a new control method for balanced and unbalanced voltage sag mitigation using DSTATCOM is proposed. The control system has two loops in order to regulate compensator current and load voltage. Delayed signal cancellation has been used for sequence separation. The compensator should protect sensitive loads against different types of voltage sag. Performance of the proposed method is investigated under different types of voltage sags for linear and nonlinear loads. Simulation results show appropriate operation of the proposed control system.

Keywords: Custom power, power quality, voltage sagmitigation, current vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
9556 Stability Analysis of Linear Switched Systems with Mixed Delays

Authors: Xiuyong Ding, Lan Shu

Abstract:

This paper addresses the stability of the switched systems with discrete and distributed time delays. By applying Lyapunov functional and function method, we show that, if the norm of system matrices Bi is small enough, the asymptotic stability is always achieved. Finally, a example is provided to verify technically feasibility and operability of the developed results.

Keywords: Switched system, stability, Lyapunov function, Lyapunov functional, delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
9555 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
9554 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening

Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah

Abstract:

This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.

Keywords: 3-D numerical analysis, damage mechanics, RC slab with opening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
9553 Experimental Investigation of Plane Jets Exiting Five Parallel Channels with Large Aspect Ratio

Authors: Laurentiu Moruz, Jens Kitzhofer, Mircea Dinulescu

Abstract:

The paper aims to extend the knowledge about jet behavior and jet interaction between five plane unventilated jets with large aspect ratio (AR). The distance between the single plane jets is two times the channel height. The experimental investigation applies 2D Particle Image Velocimetry (PIV) and static pressure measurements. Our study focuses on the influence of two different outlet nozzle geometries (triangular shape with 2 x 7.5° and blunt geometry) with respect to variation of Reynolds number from 5500 - 12000. It is shown that the outlet geometry has a major influence on the jet formation in terms of uniformity of velocity profiles downstream of the sudden expansion. Furthermore, we describe characteristic regions like converging region, merging region and combined region. The triangular outlet geometry generates most uniform velocity distributions in comparison to a blunt outlet nozzle geometry. The blunt outlet geometry shows an unstable behavior where the jets tend to attach to one side of the walls (ceiling) generating a large recirculation region on the opposite side. Static pressure measurements confirm the observation and indicate that the recirculation region is connected to larger pressure drop.

Keywords: 2D particle image velocimetry, parallel jet interaction, pressure drop, sudden expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
9552 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
9551 Parametric Vibrations of Periodic Shells

Authors: B. Tomczyk, R. Mania

Abstract:

Thin linear-elastic cylindrical circular shells having a micro-periodic structure along two directions tangent to the shell midsurface (biperiodic shells) are object of considerations. The aim of this paper is twofold. First, we formulate an averaged nonasymptotic model for the analysis of parametric vibrations or dynamical stability of periodic shells under consideration, which has constant coefficients and takes into account the effect of a cell size on the overall shell behavior (a length-scale effect). This model is derived employing the tolerance modeling procedure. Second we apply the obtained model to derivation of frequency equation being a starting point in the analysis of parametric vibrations. The effect of the microstructure length oh this frequency equation is discussed.

Keywords: Micro-periodic shells, mathematical modeling, length-scale effect, parametric vibrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
9550 Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface

Authors: Nor Fadzillah Mohd Mokhtar, Norihan Md Arifin, Roslinda Nazar, Fudziah Ismail, MohamedSuleiman

Abstract:

The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number and the Biot number are analyzed for the stability of the system. It is found that a decrease in the Crispation number and an increase in the Bond number delay the onset of convection in porous media. In addition, the system becomes more stable when the Biot number is increases and the Daeff number is decreases.

Keywords: Deformable, Marangoni, Porous, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
9549 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
9548 Experimental Inspection of Damage and Performance Evaluation after Repair and Strengthening of Jiamusi Highway Prestressed Concrete Bridge in China

Authors: Ali Fadhil Naser, Wang Zonglin

Abstract:

The main objectives of this study are to inspect and identify any damage of jaimusi highway prestressed concrete bridge after repair and strengthening of damaged structural members and to evaluate the performance of the bridge structural members by adopting static load test. Inspection program after repair and strengthening includes identifying and evaluating the structural members of bridge such as T-shape cantilever structure, hanging beams, corbels, external tendons, anchor beams, sticking steel plate, and piers. The results of inspection show that the overall state of the bridge structural member after repair and strengthening is good. The results of rebound test of concrete strength show that the average strength of concrete is 46.31Mpa. Whereas, the average value of concrete strength of anchor beam is 49.82Mpa. According to the results of static load test, the experimental values are less than theoretical values of internal forces, deflection, and strain, indicating that the stiffness of the experimental structure, overall deformation and integrity satisfy the designed standard and the working performance is good, and the undertaking capacity has a certain surplus. There is not visible change in the length and width of cracks and there are not new cracks under experimental load.

Keywords: Jiamusi Bridge, Damage inspection, deflection, strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
9547 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator

Authors: J. Ritonja

Abstract:

Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.

Keywords: Adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
9546 State of Charge Estimator Based On High-Gain Observer for Lithium-Ion Batteries

Authors: Jaeho Han, Moonjung Kim, Won-Ho Kim, Chang-Ho Hyun

Abstract:

This paper introduces a high-gain observer based state of charge(SOC) estimator for lithium-Ion batteries. The proposed SOC estimator has a high-gain observer(HGO) structure. The HGO scheme enhances the transient response speed and diminishes the effect of uncertainties. Furthermore, it guarantees that the output feedback controller recovers the performance of the state feedback controller when the observer gain is sufficiently high. In order to show the effectiveness of the proposed method, the linear RC battery model in ADVISOR is used. The performance of the proposed method is compared with that of the conventional linear observer(CLO) and some simulation result is given.

Keywords: SOC, high-gain, observer, uncertainties, robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
9545 Subjective Assessment about Super Resolution Image Resolution

Authors: Seiichi Gohshi, Hiroyuki Sekiguchi, Yoshiyasu Shimizu, Takeshi Ikenaga

Abstract:

Super resolution (SR) technologies are now being applied to video to improve resolution. Some TV sets are now equipped with SR functions. However, it is not known if super resolution image reconstruction (SRR) for TV really works or not. Super resolution with non-linear signal processing (SRNL) has recently been proposed. SRR and SRNL are the only methods for processing video signals in real time. The results from subjective assessments of SSR and SRNL are described in this paper. SRR video was produced in simulations with quarter precision motion vectors and 100 iterations. These are ideal conditions for SRR. We found that the image quality of SRNL is better than that of SRR even though SRR was processed under ideal conditions.

Keywords: Super Resolution Image Reconstruction, Super Resolution with Non-Linear Signal Processing, Subjective Assessment, Image Quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
9544 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
9543 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
9542 Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter

Authors: Kavala Kiran Kumar, R. Govardhana Rao

Abstract:

Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.

Keywords: Active power filters (APF), Fuzzy logic controller (FLC), Hysteresis current controller (HCC), PID, Total harmonic Distortion (THD), Voltage source inverter (VSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
9541 Angles of Arrival Estimation with Unitary Partial Propagator

Authors: Youssef Khmou, Said Safi

Abstract:

In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem.  Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA).

Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Backward Partial Propagator (FBPP) and Unitary Propagator (UP). The results demonstrates that when some of the sources are fully correlated and closer than the Rayleigh angular limit resolution of the broadside array, the UPP method outperforms the FBPP in both of spatial resolution and complexity.

Keywords: DOA, Uniform Linear Array, Narrowband, Propagator, Real valued transformation, Subspace, Unitary Operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
9540 Note to the Global GMRES for Solving the Matrix Equation AXB = F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.

Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848