Search results for: electric power steering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3322

Search results for: electric power steering

2542 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion.

The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: Electric control unit, Energy, Mechanical KERS, Planetary Gear system, Power, Smart braking, Spiral Spring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8789
2541 Various Information Obtained from Acoustic Emissions Owing to Discharges in XLPE Cable

Authors: Tatsuya Sakoda, Yuta Nakamura, Junichiro Kitajima, Masaki Sugiura, Satoshi Kurihara, Kenji Baba, Koichiro Kaneko, Takayoshi Yarimitsu

Abstract:

An acoustic emission (AE) technique is useful for detection of partial discharges (PDs) at a joint and a terminal section of a cross-linked polyethylene (XLPE) cable. For AE technique, it is not difficult to detect a PD using AE sensors. However, it is difficult to grasp whether the detected AE signal is owing to a single discharge or not. Additionally, when an AE technique is applied at a terminal section of a XLPE cable in salt pollution district, for example, there is possibility of detection of AE signals owing to creeping discharges on the surface of electric power apparatus. In this study, we evaluated AE signals in order to grasp what kind of information we can get from detected AE signals. The results showed that envelop detection of AE signal and a period which some AE signals were continuously detected were good indexes for estimating state-of-discharge.

Keywords: acoustic emission, creeping discharge, partial discharge, XLPE cable

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2540 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: H∞ fuzzy integral control, linear matrix inequality, wind energy system, doubly fed induction generator (DFIG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
2539 Piezoelectric Power Output Predictions Using Single-Phase Flow to Power Flow Meters

Authors: Umar Alhaji Mukhtar, Abubakar Mohammed El-jummah

Abstract:

This research involved the utilization of fluid flow energy to predict power output using Lead Zirconate Titanate (PZT) piezoelectric stacks. The aim of this work is to extract energy from a controlled level of pressure fluctuation in single-phase flow which forms a part of the energy harvesting technology that powers flow meters. A device- Perspex box was developed and fixed to 50.8 mm rig to induce pressure fluctuation in the flow. An experimental test was carried out using the single-phase water flow in the developed rig in order to measure the power output generation from the piezoelectric stacks. 16 sets of experimental tests were conducted to ensure the maximum output result. The acquired signal of the pressure fluctuation was used to simulate the expected electrical output from the piezoelectric material. The results showed a maximum output voltage of 12 V with an instantaneous output power of 1 µW generated, when the pressure amplitude is 2.6 kPa at a frequency of 2.4 Hz.

Keywords: Energy harvesting, experimental test, perspex rig, pressure fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700
2538 Energy Conscious Builder Design Pattern with C# and Intermediate Language

Authors: Kayun Chantarasathaporn, Chonawat Srisa-an

Abstract:

Design Patterns have gained more and more acceptances since their emerging in software development world last decade and become another de facto standard of essential knowledge for Object-Oriented Programming developers nowadays. Their target usage, from the beginning, was for regular computers, so, minimizing power consumption had never been a concern. However, in this decade, demands of more complicated software for running on mobile devices has grown rapidly as the much higher performance portable gadgets have been supplied to the market continuously. To get along with time to market that is business reason, the section of software development for power conscious, battery, devices has shifted itself from using specific low-level languages to higher level ones. Currently, complicated software running on mobile devices are often developed by high level languages those support OOP concepts. These cause the trend of embracing Design Patterns to mobile world. However, using Design Patterns directly in software development for power conscious systems is not recommended because they were not originally designed for such environment. This paper demonstrates the adapted Design Pattern for power limitation system. Because there are numerous original design patterns, it is not possible to mention the whole at once. So, this paper focuses only in creating Energy Conscious version of existing regular "Builder Pattern" to be appropriated for developing low power consumption software.

Keywords: Design Patterns, Builder Pattern, Low Power Consumption, Object Oriented Programming, Power Conscious System, Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
2537 Design and Implementation of a 10-bit SAR ADC

Authors: Hasmayadi Abdul Majid, Rohana Musa

Abstract:

This paper presents the development of a 38.5 kS/s 10-bit low power SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and SAR digital logic to create 10 effective bits while consuming less than 7.8 mW with a 3.3 V power supply.

Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5437
2536 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems

Authors: Muhammad Safi, Abdul Manan

Abstract:

In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircrafts have been a hot topic in the modern aircraft world. Electric aircrafts have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.

Keywords: AI, avionics systems, communication, electric aircrafts, Infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168
2535 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
2534 Computer-based Alarm Processing and Presentation Methods in Nuclear Power Plants

Authors: Jung-Woon Lee, Jung-Taek Kim, Jae-Chang Park, In-Koo Hwang, Sung-Pil Lyu

Abstract:

Computerized alarm systems have been applied increasingly to nuclear power plants. For existing plants, an add-on computer alarm system is often installed to the control rooms. Alarm avalanches during the plant transients are major problems with the alarm systems in nuclear power plants. Computerized alarm systems can process alarms to reduce the number of alarms during the plant transients. This paper describes various alarm processing methods, an alarm cause tracking function, and various alarm presentation schemes to show alarm information to the operators effectively which are considered during the development of several computerized alarm systems for Korean nuclear power plants and are found to be helpful to the operators.

Keywords: Alarm processing, Alarm presentation, Alarm causetracking, Alarm logic diagram computerization, Alarm patternrecognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
2533 Minimization of Power Loss in Distribution Networks by Different Techniques

Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt

Abstract:

Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.

Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6234
2532 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3056
2531 Gimbal Structure for the Design of 3D Flywheel System

Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu

Abstract:

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2530 Emission Assessment of Rice Husk Combustion for Power Production

Authors: Thipwimon Chungsangunsit, Shabbir H. Gheewala, Suthum Patumsawad

Abstract:

Rice husk is one of the alternative fuels for Thailand because of its high potential and environmental benefits. Nonetheless, the environmental profile of the electricity production from rice husk must be assessed to ensure reduced environmental damage. A 10 MW pilot plant using rice husk as feedstock is the study site. The environmental impacts from rice husk power plant are evaluated by using the Life Cycle Assessment (LCA) methodology. Energy, material and carbon balances have been determined for tracing the system flow. Carbon closure has been used for describing of the net amount of CO2 released from the system in relation to the amount being recycled between the power plant and the CO2 adsorbed by rice husk. The transportation of rice husk to the power plant has significant on global warming, but not on acidification and photo-oxidant formation. The results showed that the impact potentials from rice husk power plant are lesser than the conventional plants for most of the categories considered; except the photo-oxidant formation potential from CO. The high CO from rice husk power plant may be due to low boiler efficiency and high moisture content in rice husk. The performance of the study site can be enhanced by improving the combustion efficiency.

Keywords: Environmental impact, Fossil fuels, Life Cycle Assessment (LCA), Renewable energy, Rice husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7441
2529 Free Vibration Analysis of Smart FGM Plates

Authors: F.Ebrahimi, A.Rastgo

Abstract:

Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.

Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
2528 Modeling Metrics for Monitoring Software Project Performance Based On the GQM Model

Authors: Mariayee Doraisamy, Suhaimi Bin Ibrahim, Mohd Naz’ri Mahrin

Abstract:

There are several methods to monitor software projects and the objective for monitoring is to ensure that the software projects are developed and delivered successfully. A performance measurement is a method that is closely associated with monitoring and it can be scrutinized by looking at two important attributes which are efficiency and effectiveness both of which are factors that are important for the success of a software project. Consequently, a successful steering is achieved by monitoring and controlling a software project via the performance measurement criteria and metrics. Hence, this paper is aimed at identifying the performance measurement criteria and the metrics for monitoring the performance of a software project by using the Goal Question Metrics (GQM) approach. The GQM approach is utilized to ensure that the identified metrics are reliable and useful. These identified metrics are useful guidelines for project managers to monitor the performance of their software projects.

Keywords: Software project performance, Goal Question Metrics, Performance Measurement Criteria, Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
2527 Fuzzy C-Means Clustering Algorithm for Voltage Stability in Large Power Systems

Authors: Mohamad R. Khaldi, Christine S. Khoury, Guy M. Naim

Abstract:

The steady-state operation of maintaining voltage stability is done by switching various controllers scattered all over the power network. When a contingency occurs, whether forced or unforced, the dispatcher is to alleviate the problem in a minimum time, cost, and effort. Persistent problem may lead to blackout. The dispatcher is to have the appropriate switching of controllers in terms of type, location, and size to remove the contingency and maintain voltage stability. Wrong switching may worsen the problem and that may lead to blackout. This work proposed and used a Fuzzy CMeans Clustering (FCMC) to assist the dispatcher in the decision making. The FCMC is used in the static voltage stability to map instantaneously a contingency to a set of controllers where the types, locations, and amount of switching are induced.

Keywords: Fuzzy logic, Power system control, Reactive power control, Voltage control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
2526 The Nuclear Energy Museum in Brazil: Creative Solutions to Transform Science Education into Meaningful Learning

Authors: Denise Levy, Helen J. Khoury

Abstract:

Nuclear technology is a controversial issue among a great share of the Brazilian population. Misinformation and common wrong beliefs confuse public’s perceptions and the scientific community is expected to offer a wider perspective on the benefits and risks resulting from ionizing radiation in everyday life. Attentive to the need of new approaches between science and society, the Nuclear Energy Museum, in northeast Brazil, is an initiative created to communicate the growing impact of the beneficial applications of nuclear technology in medicine, industry, agriculture and electric power generation. Providing accessible scientific information, the museum offers a rich learning environment, making use of different educational strategies, such as films, interactive panels and multimedia learning tools, which not only increase the enjoyment of visitors, but also maximize their learning potential. Developed according to modern active learning instructional strategies, multimedia materials are designed to present the increasingly role of nuclear science in modern life, transforming science education into a meaningful learning experience. In year 2016, nine different interactive computer-based activities were developed, presenting curiosities about ionizing radiation in different landmarks around the world, such as radiocarbon dating works in Egypt, nuclear power generation in France and X-radiography of famous paintings in Italy. Feedback surveys have reported a high level of visitors’ satisfaction, proving the high quality experience in learning nuclear science at the museum. The Nuclear Energy Museum is the first and, up to the present time, the only permanent museum in Brazil devoted entirely to nuclear science.

Keywords: Nuclear technology, multimedia learning tools, science museum, society and education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
2525 LFC Design of a Deregulated Power System with TCPS Using PSO

Authors: H. Shayeghi, H.A. Shayanfar, A. Jalili

Abstract:

In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.

Keywords: LFC, TCPS, Dregulated Power System, PowerSystem Control, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
2524 Frequency Regulation Support by Variable-Speed Wind Turbines and SMES

Authors: M. Saleh, H. Bevrani

Abstract:

This paper quantifies the impact of providing a shortterm excess active power support of a variable speed wind turbine (VSWT) and effect of super magnetic energy storage (SMES) unit on frequency control, particularly temporary minimum frequency (TMF) term. To demonstrate the effect of these factors on the power system frequency, a three-area power system is considered as a test system.

Keywords: Frequency regulation, inertia, primary frequencycontrol, rotational energy, variable speed wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
2523 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
2522 A Power Reduction Technique for Built-In-Self Testing Using Modified Linear Feedback Shift Register

Authors: Mayank Shakya, Soundra Pandian. K. K

Abstract:

A linear feedback shift register (LFSR) is proposed which targets to reduce the power consumption from within. It reduces the power consumption during testing of a Circuit Under Test (CUT) at two stages. At first stage, Control Logic (CL) makes the clocks of the switching units of the register inactive for a time period when output from them is going to be same as previous one and thus reducing unnecessary switching of the flip-flops. And at second stage, the LFSR reorders the test vectors by interchanging the bit with its next and closest neighbor bit. It keeps fault coverage capacity of the vectors unchanged but reduces the Total Hamming Distance (THD) so that there is reduction in power while shifting operation.

Keywords: Linear Feedback Shift Register, Total Hamming Distance, Fault Coverage, Control Logic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
2521 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718

Authors: Pushpendra S. Bharti, S. Maheshwari

Abstract:

Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.

Keywords: EDM, material removal rate, multi-response signal-to-noise ratio, optimization, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
2520 Single Phase 13-Level D-STATCOM Inverter with Distributed System

Authors: R. Kamalakannan, N. Ravi Kumar

Abstract:

The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.

Keywords: FACTS devices, distributed-Static synchronous compensators, DSTATCOM, total harmonics elimination, modular multilevel converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
2519 Active and Reactive Power Control of a DFIG with MPPT for Variable Speed Wind Energy Conversion using Sliding Mode Control

Authors: Youcef Bekakra, Djilani Ben attous

Abstract:

This paper presents the study of a variable speed wind energy conversion system based on a Doubly Fed Induction Generator (DFIG) based on a sliding mode control applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the PWM converter. To extract a maximum of power, the rotor side converter is controlled by using a stator flux-oriented strategy. The created decoupling control between active and reactive stator power allows keeping the power factor close to unity. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed.

Keywords: Doubly fed induction generator, wind energy, wind turbine, sliding mode control, maximum power point tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4107
2518 Iterative Joint Power Control and Partial Crosstalk Cancellation in Upstream VDSL

Authors: H. Bagheri, H. Emami, M. R. Pakravan

Abstract:

Crosstalk is the major limiting issue in very high bit-rate digital subscriber line (VDSL) systems in terms of bit-rate or service coverage. At the central office side, joint signal processing accompanied by appropriate power allocation enables complex multiuser processors to provide near capacity rates. Unfortunately complexity grows with the square of the number of lines within a binder, so by taking into account that there are only a few dominant crosstalkers who contribute to main part of crosstalk power, the canceller structure can be simplified which resulted in a much lower run-time complexity. In this paper, a multiuser power control scheme, namely iterative waterfilling, is combined with previously proposed partial crosstalk cancellation approaches to demonstrate the best ever achieved performance which is verified by simulation results.

Keywords: iterative waterfilling, partial crosstalk cancellation, run-time complexity, VDSL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
2517 Real Time Remote Monitoring and Fault Detection in Wind Turbine

Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui

Abstract:

In new energy development, wind power has boomed. It is due to the proliferation of wind parks and their operation in supplying the national electric grid with low cost and clean resources. Hence, there is an increased need to establish a proactive maintenance for wind turbine machines based on remote control and monitoring. That is necessary with a real-time wireless connection in offshore or inaccessible locations while the wired method has many flaws. The objective of this strategy is to prolong wind turbine lifetime and to increase productivity. The hardware of a remote control and monitoring system for wind turbine parks is designed. It takes advantage of GPRS or Wi-Max wireless module to collect data measurements from different wind machine sensors through IP based multi-hop communication. Computer simulations with Proteus ISIS and OPNET software tools have been conducted to evaluate the performance of the studied system. Study findings show that the designed device is suitable for application in a wind park.

Keywords: Embedded System, Monitoring, Wind Turbine, Faults Diagnosis, TCP/IP Protocol, Real Time, Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3977
2516 Design of a Cost Effective Off-Grid Wind-Diesel Hybrid Power System in an Island of Bangladesh

Authors: Nahid-Al-Masood, Rifat Mirza, Jubaer Ahmed, Amina Hasan Abedin, S.R. Deeba, Faeza Hafiz, Mahmuda Begum, A. Hasib Chowdhury

Abstract:

Bangladesh is a developing country with large population. Demand of electrical energy is increasing day by day because of increasing population and industrialization. But due to limited resources, people here are suffering from power crisis problem which is considered as a major obstacle to the economic development. In most of the cases, it is extremely difficult to extend high tension transmission lines to some of the places that are separated from the mainland. Renewable energy is considered to be the right choice for providing clean energy to these remote settlements. This paper proposes a cost effective design of off-grid wind-diesel hybrid power system using combined heat and power (CHP) technology in a grid isolated island, Sandwip, Bangladesh. Design and simulation of the wind-diesel hybrid power system is performed considering different factors for the island Sandwip. Detailed economic analysis and comparison with solar PV system clearly reveals that wind-diesel hybrid power system can be a cost effective solution for the isolated island like Sandwip.

Keywords: renewable energy, off-grid, wind-diesel hybrid system, CHP technology, economic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
2515 Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes

Authors: Zian Cheak Tiu, Harith Ahmad, Sulaiman Wadi Harun

Abstract:

A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 μs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.

Keywords: Multi-wavelength, Q-switched, multi-wall carbon nanotube, photonic crystal fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
2514 Power Quality Improvement Using PI and Fuzzy Logic Controllers Based Shunt Active Filter

Authors: Dipen A. Mistry, Bhupelly Dheeraj, Ravit Gautam, Manmohan Singh Meena, Suresh Mikkili

Abstract:

In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.

Keywords: DC link voltage, Fuzzy logic controller, Harmonics, PI controller, Shunt Active Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5162
2513 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem

Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen

Abstract:

A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.

Keywords: Communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191