Search results for: power storage devices
3426 Mathematical Modeling of Current Harmonics Caused by Personal Computers
Authors: Rana Abdul Jabbar Khan, Muhammad Akmal
Abstract:
Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.Keywords: Harmonic Distortion, Mathematical Modeling, Power Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25233425 Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study
Authors: Nabil M. Muhaisen, Rajab Abdullah Hokoma
Abstract:
This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating balance method. The findings showed how the maximum heat energy which produced from the boiler increases the boiler efficiency through increasing the temperature of the feed water, and decreasing the exhaust temperature along with humidity levels of the of fuel used within the boiler.Keywords: Boiler, Calculation, Efficiency, Performance. Steam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35153424 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter
Authors: S. Ganesh, J. Janani, G. Besliya Angel
Abstract:
Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.
Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59693423 An Effective Approach for Distribution System Power Flow Solution
Authors: A. Alsaadi, B. Gholami
Abstract:
An effective approach for unbalanced three-phase distribution power flow solutions is proposed in this paper. The special topological characteristics of distribution networks have been fully utilized to make the direct solution possible. Two matrices–the bus-injection to branch-current matrix and the branch-current to busvoltage matrix– and a simple matrix multiplication are used to obtain power flow solutions. Due to the distinctive solution techniques of the proposed method, the time-consuming LU decomposition and forward/backward substitution of the Jacobian matrix or admittance matrix required in the traditional power flow methods are no longer necessary. Therefore, the proposed method is robust and time-efficient. Test results demonstrate the validity of the proposed method. The proposed method shows great potential to be used in distribution automation applications.Keywords: Distribution power flow, distribution automation system, radial network, unbalanced networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42393422 Sensitivity of Small Disturbance Angle Stability to the System Parameters of Future Power Networks
Authors: Nima Farkhondeh Jahromi, George Papaefthymiou, Lou van der Sluis
Abstract:
The incorporation of renewable energy sources for the sustainable electricity production is undertaking a more prominent role in electric power systems. Thus, it will be an indispensable incident that the characteristics of future power networks, their prospective stability for instance, get influenced by the imposed features of sustainable energy sources. One of the distinctive attributes of the sustainable energy sources is exhibiting the stochastic behavior. This paper investigates the impacts of this stochastic behavior on the small disturbance rotor angle stability in the upcoming electric power networks. Considering the various types of renewable energy sources and the vast variety of system configurations, the sensitivity analysis can be an efficient breakthrough towards generalizing the effects of new energy sources on the concept of stability. In this paper, the definition of small disturbance angle stability for future power systems and the iterative-stochastic way of its analysis are presented. Also, the effects of system parameters on this type of stability are described by performing a sensitivity analysis for an electric power test system.
Keywords: Power systems stability, Renewable energy sources, Stochastic behavior, Small disturbance rotor angle stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20793421 DEMO Based Optimal Power Purchase Planning Under Electricity Price Uncertainty
Authors: Tulika Bhattacharjee, A. K.Chakraborty
Abstract:
Due to the deregulation of the Electric Supply Industry and the resulting emergence of electricity market, the volumes of power purchases are on the rise all over the world. In a bid to meet the customer-s demand in a reliable and yet economic manner, utilities purchase power from the energy market over and above its own production. This paper aims at developing an optimal power purchase model with two objectives viz economy and environment ,taking various functional operating constraints such as branch flow limits, load bus voltage magnitudes limits, unit capacity constraints and security constraints into consideration.The price of purchased power being an uncertain variable is modeled using fuzzy logic. DEMO (Differential Evolution For Multi-objective Optimization) is used to obtain the pareto-optimal solution set of the multi-objective problem formulated. Fuzzy set theory has been employed to extract the best compromise non-dominated solution. The results obtained on IEEE 30 bus system are presented and compared with that of NSGAII.Keywords: Deregulation, Differential Evolution, Multi objective Optimization, Pareto Optimal Set, Optimal Power Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15063420 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant
Authors: Cigdem Safak Saglam
Abstract:
Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.
Keywords: Thermal power plant, lignite coal, pre-treatment, demineralization, electrodialysis, recycling, waste water, process water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17123419 Efficient Power-Delay Product Modulo 2n+1 Adder Design
Authors: Yavar Safaei Mehrabani, Mehdi Hosseinzadeh
Abstract:
As embedded and portable systems were emerged power consumption of circuits had been major challenge. On the other hand latency as determines frequency of circuits is also vital task. Therefore, trade off between both of them will be desirable. Modulo 2n+1 adders are important part of the residue number system (RNS) based arithmetic units with the interesting moduli set (2n-1,2n, 2n+1). In this manuscript we have introduced novel binary representation to the design of modulo 2n+1 adder. VLSI realization of proposed architecture under 180 nm full static CMOS technology reveals its superiority in terms of area, power consumption and power-delay product (PDP) against several peer existing structures.
Keywords: Computer arithmetic, modulo 2n+1 adders, Residue Number System (RNS), VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18013418 Reducing Power in Error Correcting Code using Genetic Algorithm
Authors: Heesung Lee, Joonkyung Sung, Euntai Kim
Abstract:
This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.Keywords: Error correcting codes, genetic algorithm, non-linearpower optimization, Hamming code, Hsiao code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21853417 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ouldcherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
In this study, we proposed two techniques to track the maximum power point (MPPT) of a photovoltaic system. The first is an intelligent control technique, and the second is robust used for variable structure system. In fact the characteristics I-V and P–V of the photovoltaic generator depends on the solar irradiance and temperature. These climate changes cause the fluctuation of maximum power point; a maximum power point tracking technique (MPPT) is required to maximize the output power. For this we have adopted a control by fuzzy logic (FLC) famous for its stability and robustness. And a Siding Mode Control (SMC) widely used for variable structure system. The system comprises a photovoltaic panel (PV), a DC-DC converter, which is considered as an adaptation stage between the PV and the load. The modelling and simulation of the system is developed using MATLAB/Simulink. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or it is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: Fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21043416 Two and Three Layer Lamination of Nanofiber
Authors: Roman Knizek, Denisa Karhankova, Ludmila Fridrichova
Abstract:
For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.
Keywords: Nanofiber layer, nanomembrane, lamination, electrospinning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13433415 The Study of Synbiotic Dairy Products Rheological Properties during Shelf-Life
Authors: Ilze Beitane, Inga Ciprovica
Abstract:
The influence of lactulose and inulin on rheological properties of fermented milk during storage was studied.Pasteurized milk, freeze-dried starter culture Bb-12 (Bifidobacterium lactis, Chr. Hansen, Denmark), inulin – RAFTILINE®HP (ORAFI, Belgium) and syrup of lactulose (Duphalac®, the Netherlands) were used for experiments. The fermentation process was realized at 37 oC for 16 hours and the storage of products was provided at 4 oC for 7 days. Measurements were carried out by BROOKFIELD standard methods and the flow curves were described by Herschel-Bulkley model. The results of dispersion analysis have shown that both the concentration of prebiotics (p=0.04<0.05) and shelf life (p=0.003<0.05) have a significant influence on the apparent viscosity of the product.Keywords: Apparent viscosity, B.lactis, consistency coefficient, flow behavior index, prebiotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22513414 Using Artificial Neural Network Algorithm for Voltage Stability Improvement
Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi
Abstract:
This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703413 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation
Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita
Abstract:
In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.
Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30753412 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou
Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan
Abstract:
Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.
Keywords: Outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10263411 Investigation of Chaotic Behavior in DC-DC Converters
Authors: Sajid Iqbal, Masood Ahmed, Suhail Aftab Qureshi
Abstract:
DC-DC converters are widely used in regulated switched mode power supplies and in DC motor drive applications. There are several sources of unwanted nonlinearity in practical power converters. In addition, their operation is characterized by switching that gives birth to a variety of nonlinear dynamics. DC-DC buck and boost converters controlled by pulse-width modulation (PWM) have been simulated. The voltage waveforms and attractors obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of subharmonic oscillations, quasi-periodicity, bifurcations, and chaos have been observed. This paper is mainly motivated by potential contributions of chaos theory in the design, analysis and control of power converters, in particular and power electronics circuits, in general.
Keywords: Buck converter, boost converter, period- doubling, chaos, bifurcation, strange attractor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36493410 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term
Authors: Jaipong Kasemsuwan
Abstract:
A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14513409 Current Status and Energy Savings Potential of Solar Shading in Ningbo
Authors: Jian Yao
Abstract:
To investigate the energy performance of solar shading devices, this paper carried out a survey on the current status of solar shading utilization in buildings in Ningbo and performed building simulations to evaluate the energy savings potential by adopting different solar shading devices. Results show that solar shading utilization in this area is not popular and effective, and should be considered firstly in the design stage since the potential for energy savings is up to 6.8% for residential buildings and 9.4% for commercial buildings.
Keywords: Solar shading, Energy savings, Building design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17123408 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant
Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim
Abstract:
This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.
Keywords: Efficiency, exergy, gas turbine, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5963407 Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects
Authors: Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi
Abstract:
In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.Keywords: power amplifier, orthogonal model, polynomialmodel , memory effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22773406 Role of GIS in Distribution Power Systems
Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam
Abstract:
With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.
Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55053405 Design and Implementation of Embedded FM Transmission Control SW for Low Power Battery System
Authors: Young-Su Ryu, Kyung-Won Park, Jae-Hoon Song, Ki-Won Kwon
Abstract:
In this paper, an embedded frequency modulation (FM) transmission control software (SW) for a low power battery system is designed and implemented. The simultaneous translation systems for various languages are needed as so many international conferences and festivals are held in world wide. Especially in portable transmitting and receiving systems, the ability of long operation life is used for a measure of value. This paper proposes an embedded FM transmission control SW for low power battery system and shows the results of the SW implemented on a portable FM transmission system.Keywords: FM transmission, simultaneous translation system, portable transmitting and receiving systems, low power embedded control SW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10023404 Techno-Economic Analysis of Motor-Generator Pair System and Virtual Synchronous Generator for Providing Inertia of Power System
Authors: Zhou Yingkun, Xu Guorui, Wei Siming, Huang Yongzhang
Abstract:
With the increasing of the penetration of renewable energy in power system, the whole inertia of the power system is declining, which will endanger the frequency stability of the power system. In order to enhance the inertia, virtual synchronous generator (VSG) has been proposed. In addition, the motor-generator pair (MGP) system is proposed to enhance grid inertia. Both of them need additional equipment to provide instantaneous energy, so the economic problem should be considered. In this paper, the basic working principle of MGP system and VSG are introduced firstly. Then, the technical characteristics and economic investment of MGP/VSG are compared by calculation and simulation. The results show that the MGP system can provide same inertia with less cost than VSG.
Keywords: High renewable energy penetration, inertia of power system, virtual synchronous generator, motor-generator pair system, techno-economic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12583403 Simulation of a Boost PFC Converter with Electro Magnetic Interference Filter
Authors: P. Ram Mohan, M. Vijaya Kumar, O. V. Raghava Reddy
Abstract:
This paper deals with the simulation of a Boost Power Factor Correction (PFC) Converter with Electro Magnetic Interference (EMI) Filter. The diode rectifier with output capacitor gives poor power factor. The Boost Converter of PFC Circuit is analyzed and then simulated with diode rectifier. The Boost PFC Converter with EMI Filter is simulated for resistive load. The power factor is improved using the proposed converter.
Keywords: Boost Converter, Power Factor Correction, Electro Magnetic Interference, Diode Rectifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34353402 Fuzzy PID based PSS Design Using Genetic Algorithm
Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P
Abstract:
This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system
Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17483401 Study on Mitigation Measures of Gumti Hydro Power Plant Using Analytic Hierarchy Process and Concordance Analysis Techniques
Authors: K. Majumdar, S. Datta
Abstract:
Electricity is recognized as fundamental to industrialization and improving the quality of life of the people. Harnessing the immense untapped hydropower potential in Tripura region opens avenues for growth and provides an opportunity to improve the well-being of the people of the region, while making substantial contribution to the national economy. Gumti hydro power plant generates power to mitigate the crisis of power in Tripura, India. The first unit of hydro power plant (5MW) was commissioned in June 1976 & another two units of 5 MW was commissioned simultaneously. But out of 15MW capacity at present only 8MW- 9MW power is produced from Gumti hydro power plant during rainy season. But during lean season the production reduces to 0.5MW due to shortage of water. Now, it is essential to implement some mitigation measures so that the further atrocities can be prevented and originality will be possible to restore. The decision making ability of the Analytic Hierarchy Process (AHP) and Concordance Analysis Techniques (CAT) are utilized to identify the better decision or solution to the present problem. Some related attributes are identified by the method of surveying within the experts and the available reports and literatures. Similar criteria are removed and ultimately seven relevant ones are identified. All the attributes are compared with each other and rated accordingly to their importance over the other with the help of Pair wise Comparison Matrix. In the present investigation different mitigation measures are identified and compared to find the best suitable alternative which can solve the present uncertainties involving the existence of the Gumti Hydro Power Plant.
Keywords: Concordance Analysis Techniques, Analytic Hierarchy Process, Hydro Power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19893400 An Intelligent System for Knee and Ankle Rehabilitation
Authors: Dimitar Karastoyanov, Vladimir Monov
Abstract:
The paper is concerned with the state examination as well as the problems during the post surgical (orthopedic) rehabilitation of the knee and ankle joint. An observation of the current appliances for a passive rehabilitation devices is presented. The major necessary and basic features of the intelligent rehabilitation devices are considered. An approach for a new intelligent appliance is suggested. The main advantages of the device are: both active as well as passive rehabilitation of the patient based on the human - patient reactions and a real time feedback. The basic components: controller; electrical motor; encoder, force – torque sensor are discussed in details. The main modes of operation of the device are considered.
Keywords: Ankle, knee, rehabilitation, computer control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25873399 Comparison of Power Consumption of WiFi Inbuilt Internet of Things Device with Bluetooth Low Energy
Authors: Darshana Thomas, Edward Wilkie, James Irvine
Abstract:
The Internet of things (IoT) is currently a highly researched topic, especially within the context of the smart home. These are small sensors that are capable of gathering data and transmitting it to a server. The majority of smart home products use protocols such as ZigBee or Bluetooth Low Energy (BLE). As these small sensors are increasing in number, the need to implement these with much more capable and ubiquitous transmission technology is necessary. The high power consumption is the reason that holds these small sensors back from using other protocols such as the most ubiquitous form of communication, WiFi. Comparing the power consumption of existing transmission technologies to one with WiFi inbuilt, would provide a better understanding for choosing between these technologies. We have developed a small IoT device with WiFi capability and proven that it is much more efficient than the first protocol, 433 MHz. We extend our work in this paper and compare WiFi power consumption with the other most widely used protocol BLE. The experimental results in this paper would conclude whether the developed prototype is capable in terms of power consumption to replace the existing protocol BLE with WiFi.Keywords: Bluetooth, internet of things, power consumption, WiFi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33313398 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices
Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara
Abstract:
Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.Keywords: Turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11603397 Negative Slope Ramp Carrier Control for High Power Factor Boost Converters in CCM Operation
Authors: T. Tanitteerapan, E.Thanpo
Abstract:
This paper, a simple continuous conduction mode (CCM) pulse-width-modulated (PWM) controller for high power factor boost converters is introduced. The duty ratios were obtained by the comparison of a sensed signal from inductor current or switch current and a negative slope ramp carrier waveform in each switching period. Due to the proposed control requires only the inductor current or switch current sensor and the output voltage sensor, its circuit implementation was very simple. To verify the proposed control, the circuit experimentation of a 350 W boost converter with the proposed control was applied. From the results, the input current waveform was shaped to be closely sinusoidal, implying high power factor and low harmonics.
Keywords: High power factor converters, boost converters, low harmonic rectifiers, power factor correction, and current control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811