Search results for: data reduction
7971 Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia
Authors: Yuyun Wabula, B. J. Dewancker
Abstract:
In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.
Keywords: Geolocation, Twitter, distribution analysis, human mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11907970 Database Compression for Intelligent On-board Vehicle Controllers
Authors: Ágoston Winkler, Sándor Juhász, Zoltán Benedek
Abstract:
The vehicle fleet of public transportation companies is often equipped with intelligent on-board passenger information systems. A frequently used but time and labor-intensive way for keeping the on-board controllers up-to-date is the manual update using different memory cards (e.g. flash cards) or portable computers. This paper describes a compression algorithm that enables data transmission using low bandwidth wireless radio networks (e.g. GPRS) by minimizing the amount of data traffic. In typical cases it reaches a compression rate of an order of magnitude better than that of the general purpose compressors. Compressed data can be easily expanded by the low-performance controllers, too.
Keywords: Data analysis, data compression, differentialencoding, run-length encoding, vehicle control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15667969 EUDIS-An Encryption Scheme for User-Data Security in Public Networks
Authors: S. Balaji, M. Rajaram
Abstract:
The method of introducing the proxy interpretation for sending and receiving requests increase the capability of the server and our approach UDIV (User-Data Identity Security) to solve the data and user authentication without extending size of the data makes better than hybrid IDS (Intrusion Detection System). And at the same time all the security stages we have framed have to pass through less through that minimize the response time of the request. Even though an anomaly detected, before rejecting it the proxy extracts its identity to prevent it to enter into system. In case of false anomalies, the request will be reshaped and transformed into legitimate request for further response. Finally we are holding the normal and abnormal requests in two different queues with own priorities.
Keywords: IDS, Data & User authentication, UDIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18537968 An Analysis of Genetic Algorithm Based Test Data Compression Using Modified PRL Coding
Authors: K. S. Neelukumari, K. B. Jayanthi
Abstract:
In this paper genetic based test data compression is targeted for improving the compression ratio and for reducing the computation time. The genetic algorithm is based on extended pattern run-length coding. The test set contains a large number of X value that can be effectively exploited to improve the test data compression. In this coding method, a reference pattern is set and its compatibility is checked. For this process, a genetic algorithm is proposed to reduce the computation time of encoding algorithm. This coding technique encodes the 2n compatible pattern or the inversely compatible pattern into a single test data segment or multiple test data segment. The experimental result shows that the compression ratio and computation time is reduced.Keywords: Backtracking, test data compression (TDC), x-filling, x-propagating and genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18687967 Parallel Vector Processing Using Multi Level Orbital DATA
Authors: Nagi Mekhiel
Abstract:
Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.Keywords: Memory organization, parallel processors, serial code, vector processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10617966 Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity
Authors: Mamoun F. Al-Mistarihi
Abstract:
We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.Keywords: Volterra Filter, Pulse Inversion, Ultrasonic Imaging, Contrast Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15887965 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement
Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey
Abstract:
The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.
Keywords: BI, hybrid, hydrodynamic cavitation, wet air oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17557964 An Investigation into the Application of Artificial Neural Networks to the Prediction of Injuries in Sport
Authors: J. McCullagh, T. Whitfort
Abstract:
Artificial Neural Networks (ANNs) have been used successfully in many scientific, industrial and business domains as a method for extracting knowledge from vast amounts of data. However the use of ANN techniques in the sporting domain has been limited. In professional sport, data is stored on many aspects of teams, games, training and players. Sporting organisations have begun to realise that there is a wealth of untapped knowledge contained in the data and there is great interest in techniques to utilise this data. This study will use player data from the elite Australian Football League (AFL) competition to train and test ANNs with the aim to predict the onset of injuries. The results demonstrate that an accuracy of 82.9% was achieved by the ANNs’ predictions across all examples with 94.5% of all injuries correctly predicted. These initial findings suggest that ANNs may have the potential to assist sporting clubs in the prediction of injuries.Keywords: Artificial Neural Networks, data, injuries, sport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28837963 Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems
Authors: Sui Xin, Li Chunsheng, Tian Di
Abstract:
Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.
Keywords: Delay, SMS, reliability, distributed monitoringsystem (DMS), wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17037962 Data-organization Before Learning Multi-Entity Bayesian Networks Structure
Authors: H. Bouhamed, A. Rebai, T. Lecroq, M. Jaoua
Abstract:
The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.
Keywords: Data-organization, data-optimization, automatic knowledge discovery, Multi-Entities Bayesian networks, score merging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16107961 Data Gathering Protocols for Wireless Sensor Networks
Authors: Dhinu Johnson, Gurdip Singh
Abstract:
Sensor network applications are often data centric and involve collecting data from a set of sensor nodes to be delivered to various consumers. Typically, nodes in a sensor network are resource-constrained, and hence the algorithms operating in these networks must be efficient. There may be several algorithms available implementing the same service, and efficient considerations may require a sensor application to choose the best suited algorithm. In this paper, we present a systematic evaluation of a set of algorithms implementing the data gathering service. We propose a modular infrastructure for implementing such algorithms in TOSSIM with separate configurable modules for various tasks such as interest propagation, data propagation, aggregation, and path maintenance. By appropriately configuring these modules, we propose a number of data gathering algorithms, each of which incorporates a different set of heuristics for optimizing performance. We have performed comprehensive experiments to evaluate the effectiveness of these heuristics, and we present results from our experimentation efforts.Keywords: Data Centric Protocols, Shortest Paths, Sensor networks, Message passing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14437960 Measured versus Default Interstate Traffic Data in New Mexico, USA
Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder
Abstract:
This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values.Keywords: AASHTOWare, Traffic, Weigh-in-Motion, Axle load Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16977959 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18317958 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz
Abstract:
The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing handover procedure while the user is on the move. However, dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and/or handover failure because of short time of stay of a user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method decreases the candidate small cell list, unnecessary handovers, handover failure and short time of stay cells compared to the competitive method.
Keywords: Handover, HetNets, MADM, small cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5377957 Numerical Investigation of Delamination in Carbon-Epoxy Composite using Arcan Specimen
Authors: M. Nikbakht, N. Choupani
Abstract:
In this paper delamination phenomenon in Carbon-Epoxy laminated composite material is investigated numerically. Arcan apparatus and specimen is modeled in ABAQUS finite element software for different loading conditions and crack geometries. The influence of variation of crack geometry on interlaminar fracture stress intensity factor and energy release rate for various mixed mode ratios and pure mode I and II was studied. Also, correction factors for this specimen for different crack length ratios were calculated. The finite element results indicate that for loading angles close to pure mode-II loading, a high ratio of mode-II to mode-I fracture is dominant and there is an opposite trend for loading angles close to pure mode-I loading. It confirms that by varying the loading angle of Arcan specimen pure mode-I, pure mode-II and a wide range of mixed-mode loading conditions can be created and tested. Also, numerical results confirm that the increase of the mode- II loading contribution leads to an increase of fracture resistance in the CF/PEI composite (i.e., a reduction in the total strain energy release rate) and the increase of the crack length leads to a reduction of interlaminar fracture resistance in the CF/PEI composite (i.e., an increase in the total interlaminar strain energy release rate).Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19097956 Preliminary Analysis of Energy Efficiency in Data Center: Case Study
Authors: Xiaoshu Lu, Tao Lu, Matias Remes, Martti Viljanen
Abstract:
As the data-driven economy is growing faster than ever and the demand for energy is being spurred, we are facing unprecedented challenges of improving energy efficiency in data centers. Effectively maximizing energy efficiency or minimising the cooling energy demand is becoming pervasive for data centers. This paper investigates overall energy consumption and the energy efficiency of cooling system for a data center in Finland as a case study. The power, cooling and energy consumption characteristics and operation condition of facilities are examined and analysed. Potential energy and cooling saving opportunities are identified and further suggestions for improving the performance of cooling system are put forward. Results are presented as a comprehensive evaluation of both the energy performance and good practices of energy efficient cooling operations for the data center. Utilization of an energy recovery concept for cooling system is proposed. The conclusion we can draw is that even though the analysed data center demonstrated relatively high energy efficiency, based on its power usage effectiveness value, there is still a significant potential for energy saving from its cooling systems.Keywords: Data center, case study, cooling system, energyefficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15427955 Multidimensional Visualization Tools for Analysis of Expression Data
Authors: Urska Cvek, Marjan Trutschl, Randolph Stone II, Zanobia Syed, John L. Clifford, Anita L. Sabichi
Abstract:
Expression data analysis is based mostly on the statistical approaches that are indispensable for the study of biological systems. Large amounts of multidimensional data resulting from the high-throughput technologies are not completely served by biostatistical techniques and are usually complemented with visual, knowledge discovery and other computational tools. In many cases, in biological systems we only speculate on the processes that are causing the changes, and it is the visual explorative analysis of data during which a hypothesis is formed. We would like to show the usability of multidimensional visualization tools and promote their use in life sciences. We survey and show some of the multidimensional visualization tools in the process of data exploration, such as parallel coordinates and radviz and we extend them by combining them with the self-organizing map algorithm. We use a time course data set of transitional cell carcinoma of the bladder in our examples. Analysis of data with these tools has the potential to uncover additional relationships and non-trivial structures.Keywords: microarrays, visualization, parallel coordinates, radviz, self-organizing maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25077954 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.
Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11437953 A Multi-Agent Framework for Data Mining
Authors: Kamal Ali Albashiri, Khaled Ahmed Kadouh
Abstract:
A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.Keywords: Multi-Agent Data Mining (MADM), Frequent Itemsets, Meta ARM, Association Rule Mining, Classifier generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20737952 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making
Authors: Nevena Stolba, A Min Tjoa
Abstract:
Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.
Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38107951 Progressive Loading Effect of Co over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane
Authors: Sushil Kumar Saraswat, K. K. Pant
Abstract:
Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to COx free hydrogen and carbon nanomaterials. The catalytic runs were carried out from 550-800oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, XRD, SEM, TEM and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity at 800oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs and branched CNFs depending on the catalyst composition and reaction temperature were obtained.
Keywords: Carbon nanotubes, Cobalt, Hydrogen Production, Methane decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28387950 Incentive Policies to Promote Green Infrastructure in Urban Jordan
Authors: Zayed Freah Zeadat
Abstract:
The wellbeing of urban dwellers is strongly associated with the quality and quantity of green infrastructure. Nevertheless, urban green infrastructure is still lagging in many Arab cities, and Jordan is no exception. The capital city of Jordan, Amman, is becoming more urban dense with limited green spaces. The unplanned urban growth in Amman has caused several environmental problems such as urban heat islands, air pollution and lack of green spaces. This study aims to investigate the most suitable drivers to leverage the implementation of urban green infrastructure in Jordan through qualitative and quantitative analysis. The qualitative research includes an extensive literature review to discuss the most common drivers used internationally to promote urban green infrastructure implementation in the literature. The quantitative study employs a questionnaire survey to rank the suitability of each driver. Consultants, contractors and policymakers were invited to fill the research questionnaire according to their judgments and opinions. Relative Importance Index has been used to calculate the weighted average of all drivers and the Kruskal-Wallis test to check the degree of agreement among groups. This study finds that research participants agreed that indirect financial incentives (i.e., tax reductions, reduction in stormwater utility fee, reduction of interest rate, density bonus etc.) are the most effective incentive policy whilst granting sustainability certificate policy is the least effective driver to ensure widespread of UGI is elements in Jordan.
Keywords: sustainable development, urban green infrastructure, relative importance index, urban Jordan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5627949 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18117948 AudioMine: Medical Data Mining in Heterogeneous Audiology Records
Authors: Shaun Cox, Michael Oakes, Stefan Wermter, Maurice Hawthorne
Abstract:
We report on the results of a pilot study in which a data-mining tool was developed for mining audiology records. The records were heterogeneous in that they contained numeric, category and textual data. The tools developed are designed to observe associations between any field in the records and any other field. The techniques employed were the statistical chi-squared test, and the use of self-organizing maps, an unsupervised neural learning approach.
Keywords: Audiology, data mining, chi-squared, self-organizing maps
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16697947 Fuzzy Types Clustering for Microarray Data
Authors: Seo Young Kim, Tai Myong Choi
Abstract:
The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.Keywords: Clustering, microarray data, Fuzzy-type clustering, Validation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15207946 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: Dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9997945 Robust Regression and its Application in Financial Data Analysis
Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani
Abstract:
This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.
Keywords: Financial data analysis, Influential data, Outliers, Robust regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19317944 Treatment of Paper and Pulp Mill Effluent by Coagulation
Authors: Pradeep Kumar, Tjoon Tow Teng, Shri Chand, Kailas L. Wasewar
Abstract:
The pulp and paper mill effluent is one of the high polluting effluent amongst the effluents obtained from polluting industries. All the available methods for treatment of pulp and paper mill effluent have certain drawbacks. The coagulation is one of the cheapest process for treatment of various organic effluents. Thus, the removal of chemical oxygen demand (COD) and colour of paper mill effluent is studied using coagulation process. The batch coagulation process was performed using various coagulants like: aluminium chloride, poly aluminium chloride and copper sulphate. The initial pH of the effluent (Coagulation pH) has tremendous effect on COD and colour removal. Poly aluminium chloride (PAC) as coagulant reduced COD to 84 % and 92 % of colour was removed at an optimum pH 5 and coagulant dose of 8 ml l-1. With aluminium chloride at an optimum pH = 4 and coagulant dose of 5 g l-1, 74 % COD and 86 % colour removal were observed. The results using copper sulphate as coagulant (a less commercial coagulant) were encouraging. At an optimum pH 6 and mass loading of 5 g l-1, 76 % COD reduction and 78 % colour reduction were obtained. It was also observed that after addition of coagulant, the pH of the effluent decreases. The decrease in pH was highest for AlCl3, which was followed by PAC and CuSO4. Significant amount of COD reductions was obtained by coagulation process. Since the coagulation process is the first stage for treatment of effluent and some of the coagulant cations usually remain in the treated effluents. Thus, cation like copper may be one of the good catalyst for second stage of treatment process like wet oxidation. The copper has been found to be good oxidation catalyst then iron and aluminum.Keywords: Aluminium based coagulants, Coagulation, Copper, PAC, Pulp and paper mill effluent, Wastewater treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69937943 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: Data grids, fault tolerance, chandy-lamport, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9497942 Effect of Phosphate Solubilization Microorganisms (PSM) and Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Yield Components of Corn (Zea mays L.)
Authors: Mohammad Yazdani, Mohammad Ali Bahmanyar, Hemmatollah Pirdashti, Mohammad Ali Esmaili
Abstract:
In order to study the effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn Zea mays (L. cv. SC604) an experiment was conducted at research farm of Sari Agricultural Sciences and Natural Resources University, Iran during 2007. Experiment laid out as split plot based on randomized complete block design with three replications. Three levels of manures (consisted of 20 Mg.ha-1 farmyard manure, 15 Mg.ha-1 green manure and check or without any manures) as main plots and eight levels of biofertilizers (consisted of 1-NPK or conventional fertilizer application; 2-NPK+PSM+PGPR; 3 NP50%K+PSM+PGPR; 4- N50%PK+PSM +PGPR; 5-N50%P50%K+PSM+ PGPR; 6-PK+PGPR; 7- NK+PSM and 8-PSM+PGPR) as sub plots were treatments. Results showed that farmyard manure application increased row number, ear weight, grain number per ear, grain yield, biological yield and harvest index compared to check. Furthermore, using of PSM and PGPR in addition to conventional fertilizer applications (NPK) could improve ear weight, row number and grain number per row and ultimately increased grain yield in green manure and check plots. According to results in all fertilizer treatments application of PSM and PGPR together could reduce P application by 50% without any significant reduction of grain yield. However, this treatment could not compensate 50% reduction of N application.Keywords: Biofertilizers, corn, PSM, PGPR, grain yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6680