@article{(Open Science Index):https://publications.waset.org/pdf/13277,
	  title     = {Treatment of Paper and Pulp Mill Effluent by Coagulation},
	  author    = {Pradeep Kumar and  Tjoon Tow Teng and  Shri Chand and  Kailas L. Wasewar},
	  country	= {},
	  institution	= {},
	  abstract     = {The pulp and paper mill effluent is one of the high
polluting effluent amongst the effluents obtained from polluting
industries. All the available methods for treatment of pulp and paper
mill effluent have certain drawbacks. The coagulation is one of the
cheapest process for treatment of various organic effluents. Thus, the
removal of chemical oxygen demand (COD) and colour of paper mill
effluent is studied using coagulation process. The batch coagulation
process was performed using various coagulants like: aluminium
chloride, poly aluminium chloride and copper sulphate. The initial
pH of the effluent (Coagulation pH) has tremendous effect on COD
and colour removal. Poly aluminium chloride (PAC) as coagulant
reduced COD to 84 % and 92 % of colour was removed at an
optimum pH 5 and coagulant dose of 8 ml l-1. With aluminium
chloride at an optimum pH = 4 and coagulant dose of 5 g l-1, 74 %
COD and 86 % colour removal were observed. The results using
copper sulphate as coagulant (a less commercial coagulant) were
encouraging. At an optimum pH 6 and mass loading of 5 g l-1, 76 %
COD reduction and 78 % colour reduction were obtained. It was also
observed that after addition of coagulant, the pH of the effluent
decreases. The decrease in pH was highest for AlCl3, which was
followed by PAC and CuSO4. Significant amount of COD reductions
was obtained by coagulation process. Since the coagulation process
is the first stage for treatment of effluent and some of the coagulant
cations usually remain in the treated effluents. Thus, cation like
copper may be one of the good catalyst for second stage of treatment
process like wet oxidation. The copper has been found to be good
oxidation catalyst then iron and aluminum.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {5},
	  number    = {8},
	  year      = {2011},
	  pages     = {715 - 720},
	  ee        = {https://publications.waset.org/pdf/13277},
	  url   	= {https://publications.waset.org/vol/56},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 56, 2011},