**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31819

##### Multidimensional Visualization Tools for Analysis of Expression Data

**Authors:**
Urska Cvek,
Marjan Trutschl,
Randolph Stone II,
Zanobia Syed,
John L. Clifford,
Anita L. Sabichi

**Abstract:**

**Keywords:**
microarrays,
visualization,
parallel coordinates,
radviz,
self-organizing maps.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1074635

**References:**

[1] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), pp. 531-537, 1999.

[2] P.T. Spelman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, B. Fucher. Comprehensive identification of cell-cycle regulated genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization. Molecular Biology of the Cell, 9(12), pp. 3273-3297, 1998.

[3] T. Zhang, R. Ramakrishnan, M. Livny. Birch: an efficient data clustering method for very large databases. Proc.Int. Conf. Management of Data, pp. 103-114, 1996.

[4] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E.S. Lander, T.R. Golub. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Atl. Acad. Sci., 96(6), pp. 2907- 2912, 1999.

[5] P. Saraiya, C. North, K. Duca. An evaluation of microarray visualization tools for biological insight. Proc. Information Visualization 2004, pp. 1- 8, 2004.

[6] G. Grinstein, M. Trutschl, U. Cvek, High-dimensional visualizations. 7th ACM/SIGKDD Data mining Conference (KDD), 2001.

[7] T. Kohonen, Self-organized formation of topologically correct feature maps. Biological Cybernetics, vol. 43, pp. 59-69, 1982.

[8] R. Stone II, A.L. Sabichi, J. Gill, I.Lee, R. Loganatharaj, M. Trutschl, U. Cvek, J.L. Clifford. Identification of genes involved in early stage bladder cancer progression. Unpublished.

[9] Z.T. Zhang, J. Pak, E. Shapiro, T.T. Sun, X.R. Wu. Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res., 59(14), pp. 3512-7, 1999.

[10] R. Gentleman, V. Carey, et al. (editors) Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer, 2005.

[11] R. Gentleman, W. Huber. Working with Affymetrix data: estrogen, a 2x2 factorial design example. Practical Microarray Course, Heidelberg, 2003.

[12] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria, 2008.

[13] R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80, 2004.

[14] G.K. Smyth. Limma: Linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. R. Genleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (editors) Springer pp. 397-420, 2005.

[15] L. Gautier, L. Cope, B.M. Bolstad, R.A. Irizarry. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 12(3), pp. 307-315, 2004.

[16] A. Torrente, M. Kapushesky, A. Brazma. A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings. Bioinformatics 21(21), pp. 3993-3999, 2005.

[17] D. Keim, H. Kriegel, M. Ankerst. Recursive pattern: a technique for visualizing very large amounts of data. Proc. Visualization 1995, pp. 279-286, 1995.

[18] D.F. Andrews. Plots of high-dimensional data. Biometrics, 29, pp. 125- 136, 1972.

[19] J.M. Chambers, W.S. Cleveland, B. Kleiner, P.A. Tukey. Graphical Methods for Data Analysis, Chapman and Hall, 1976.

[20] J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin, Madison, WI, 1983.

[21] A. Inselberg, The plane with parallel coordinates. The Visual Computer, pp. 69-92, 1985.

[22] A. Inselberg, B. Dimsdale, Parallel coordinates: A tool for visualizing multidimensional geometry. Proc. IEEE Visualization, pp. 361-378, 1990.

[23] P. Hoffman, G. Grinstein. Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations. Presented at NPIV 99 (Workshop on New Paradigms in Information Visualization and Manipulation), 1999.

[24] W. Peng, M.O. Ward, E.A. Rundensteiner, Clutter reduction in multidimensional data visualization using dimension reordering. Proc. IEEE Symposium on Information Visualization, pp. 89-96, 2004.

[25] M.O. Ward, XmdvTool: Integrating multiple methods for visualizing multivariate data. Proc. IEEE Visualization 1994, pp. 326-333, 1994. URL: http://davis.wpi.edu/~xmdv/.

[26] J. Yang, W. Peng, M.O. Ward, E.A. Rudensteiner, Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. Proc. IEEE Symposium on Information Visualization, pp. 14-21, 2003.

[27] Y.-H. Fua, M.O. Ward, E.A. Rundensteiner, Hierarchical parallel coordinates for exploration of large datasets. Proc. IEEE 5th International Conference on Information Visualization, pp. 425-432, 2001.

[28] Y.-H. Fua, M.O. Ward, E.A. Rundensteiner, Navigating hierarchies with structure-based brushes. Proc. IEEE 5th International Conference on Information Visualization, pp. 58-64, 1999.

[29] J. Johansson, P. Ljung, M. Jern, M. Cooper, Revealing structure within clustered parallel coordinates displays. Proc. IEEE Symposium on Information Visualization, pp. 125-132, 2005.

[30] H. Siirtola, Direct manipulation of parallel coordinates, Proc. IEEE 4th International Conference on Information Visualization, pp. 373-378, 2000.

[31] N. Lesh, M. Mitzenmacher, Interactive data summarization: an example application. Proc. Working Conference on Advanced Visual Interfaces, pp. 183-187, 2004.

[32] J.F. Rodrigues, Jr., A.J. Traina, C. Traina, Jr., Frequency plot and relevance plot to enhance visual data exploration. Proc. XVI Brazilian Symposium on Computer Graphics and Image Processing, pp. 117-134, 2003.

[33] M. Berthold, L.O. Hall, Visualizing fuzzy points in parallel coordinates. IEEE Transactions on Fuzzy Systems, pp. 369-374, 2003.

[34] G. Andrienko, N. Andrienko, Parallel coordinates for exploring properties of subsets. Proc. 2nd IEEE Conference on Coordinated and Multiple Views in Exploratory Visualization, pp. 93-104, 2004.

[35] M. Novotny, Visually effective information visualization of large data. Proc. 8th Central European Seminar on Computer Graphics, pp. 41-48, 2004.

[36] J.J. Miller, E.J. Wegman, Construction of line densities for parallel coordinate plots. Computational Statistics and Graphics, eds. A. Buja, P. Tukey, Springer-Verlag, pp. 107-123, 1990.

[37] E.J. Wegman, Hyperdimensional data analysis using parallel coordinates. Journal of American Statistical Association, 85 (411), pp. 664-675, 1990.

[38] E.J. Wegman, Q. Luo, High dimensional clustering using parallel coordinates and the grand tour. Proc. Conf. German Classification Society, Freiburg, Germany, 1996.

[39] A.O. Artero, M.C. Ferreira de Oliveira, H. Levkowitz, Uncovering Clusters in Crowded Parallel Coordinates Visualizations. Proc. IEEE Symposium on Information Visualization, pp. 81-88, 2004.

[40] D. Ericson, J. Johansson, M. Cooper, Visual data analysis using tracked statistical measures within parallel coordinate representations. Proc. 3rd IEEE Conference on Coordinated and Multiple Views in Exploratory Visualization, pp. 42-53, 2005.

[41] E. Bertini, L. Dell- Aquila, G. Santucci, Springview: cooperation of radviz and parallel coordinates or view optimization and clutter reduction. Proc. 3rd IEEE International Conference on Coordinated & Multiple Views in Exploratory Visualization, pp. 22-29, 2005.

[42] P.C. Wong, R.D. Bergeron, Multivariate visualization using metric scaling. Proc. IEEE Visualization 1997, pp. 111-118, 1997.

[43] Y.-H. Fua, M.O. Ward, E.A. Rundensteiner, Hierarchical parallel coordinates for exploration of large datasets. Proc. IEEE 5th International Conference on Information Visualization, pp. 425-432, 2001.

[44] M.O. Ward, XmdvTool: Integrating multiple methods for visualizing multivariate data. Proc. IEEE Visualization 1994, pp. 326-333, 1994.

[45] J. Yang, A. Patro, S. Huang, N. Mehta, M.O. Ward, E.A. Rundensteiner, Value and relation display for interactive exploration of high dimensional datasets. Proc. IEEE Symposium on Information Visualization 2004, pp. 73-80, 2004

[46] G. Leban, I. Bratko, U. Petrovic, T. Curk, B. Zupan. VizRank: finding informative data projections in functional genomics by machine learning. Bioinformatics, 21, 2005.

[47] P. Au, M. Carey, S. Sewraz, Y. Guo, S. Ruger. New paradigms in information visualization. Proc. 23rd International ACM SIGIR Conference, Athens, Greece, 2000.

[48] J. Seo, B. Shneiderman. A Rank-by-Feature framework for unsupervised multidimensional data exploration using low dimensional projections. Proc. IEEE InfoVis2004, pp. 65-72, 2004.

[49] URL: http://www.cs.umd.edu/hcil/hce/

[50] J. Demsar, B. Zupan, G. Leban. Orange: From Experimental Machine Learning to Interactive Data Mining, White Paper. Faculty of Computer and Information Science, University of Ljubljana.

[51] URL:www.ailab.si/orange

[52] M.A. Nour, G.R. Madey. Heuristic and optimization approaches to extending the Kohonen self-organizing algorithm. European Journal of Operational Research, 93(2), pp. 428-448, 1996.

[53] B. Fritzke. Growing cell structures - a self-organizing network for unsupervised and supervised learning. Neural Networks 7, 9, pp. 1441- 1460, 1994.

[54] P. Koikkalainen, E. Oja. Self-organizing hierarchical feature maps, International Joint Conference on Neural Networks IJCNN'90, pp. 279- 284, 1990.

[55] E. Oja. A simplified neuron model as a principle component analyzer. Journal of Mathematical Biology ,15, pp. 267-273, 1982.

[56] M. A. Kraaijveld, J. Mao, A.K. Jain. A nonlinear projection method based on Kohonen's topology preserving maps. IEEE Transactions on Neural Networks, 6(3), pp. 548-559, 1995.

[57] D. Merkl, A. Rauber. Alternative ways for cluster visualization in selforganizing maps, Proc. Workshop on Self-Organizing Maps, pp. 106- 111, 1997.

[58] M.-C. Su, H.-T. Chang. Fast self-organizing feature map algorithm, IEEE Transaction on Neural Networks, 11(3), pp.721-727, 2000.