Search results for: adaptive comfort.
246 Adaptive Anisotropic Diffusion for Ultrasonic Image Denoising and Edge Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang, Yu Li
Abstract:
Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme.
Keywords: anisotropic diffusion, coordinate transformation, directional derivatives, edge enhancement, hyperbolic tangent function, image denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899245 Survey on Strategic Games and Decision Making
Authors: S. Madhavi, K. Baala Srinivas, G. Bharath, R. K. Indhuja, M. Kowser Chandini
Abstract:
Game theory is the study of how people interact and make decisions to handle competitive situations. It has mainly been developed to study decision making in complex situations. Humans routinely alter their behaviour in response to changes in their social and physical environment. As a consequence, the outcomes of decisions that depend on the behaviour of multiple decision makers are difficult to predict and require highly adaptive decision-making strategies. In addition to the decision makers may have preferences regarding consequences to other individuals and choose their actions to improve or reduce the well-being of others. Nash equilibrium is a fundamental concept in the theory of games and the most widely used method of predicting the outcome of a strategic interaction in the social sciences. A Nash Equilibrium exists when there is no unilateral profitable deviation from any of the players involved. On the other hand, no player in the game would take a different action as long as every other player remains the same.
Keywords: Game Theory, Nash Equilibrium, Rules of Dominance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371244 Re-Design of Load Shedding Schemes of the Kosovo Power System
Authors: A.Gjukaj, G.Kabashi, G.Pula, N.Avdiu, B.Prebreza
Abstract:
This paper discusses aspects of re-design of loadshedding schemes with respect to actual developments in the Kosovo power system. Load-shedding is a type of emergency control that is designed to ensure system stability by reducing power system load to match the power generation supply. This paper presents a new adaptive load-shedding scheme that provides emergency protection against excess frequency decline, in cases when the Kosovo power system might be disconnected from the regional transmission network. The proposed load-shedding scheme uses the local frequency rate information to adapt the load-shedding pattern to suit the size and location of the occurring disturbance. The proposed scheme is tested in a software simulation on a large scale PSS/E model which represents nine power system areas of Southeast Europe including the Kosovo power system.Keywords: About Load Shedding, Power System Transient, PSS/E Dynamic Simulation, Under-frequency Protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2764243 Connectionist Approach to Generic Text Summarization
Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad
Abstract:
As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589242 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665241 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm
Authors: Latha Parthiban, R. Subramanian
Abstract:
Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.
Keywords: CANFIS, genetic algorithms, heart disease, membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3990240 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces
Authors: S. Matour, M. Mahdavinejad, R. Fayaz
Abstract:
Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.
Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258239 Influence of Environmental Temperature on Dairy Herd Performance and Behaviour
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, S. Harapanahalli, J. Walsh
Abstract:
The objective of this study was to determine the effects of environmental stressors on the performance of lactating dairy cows and discuss some future trends. There exists a relationship between the meteorological data and milk yield prediction accuracy in pasture-based dairy systems. New precision technologies are available and are being developed to improve the sustainability of the dairy industry. Some of these technologies focus on welfare of individual animals on dairy farms. These technologies allow the automatic identification of animal behaviour and health events, greatly increasing overall herd health and yield while reducing animal health inspection demands and long-term animal healthcare costs. The data set consisted of records from 489 dairy cows at two dairy farms and temperature measured from the nearest meteorological weather station in 2018. The effects of temperature on milk production and behaviour of animals were analyzed. The statistical results indicate different effects of temperature on milk yield and behaviour. The “comfort zone” for animals is in the range 10 °C to 20 °C. Dairy cows out of this zone had to decrease or increase their metabolic heat production, and it affected their milk production and behaviour.
Keywords: Behaviour, milk yield, temperature, precision technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630238 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.
Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632237 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data
Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani
Abstract:
Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.
Keywords: EMD, neural data processing, spike detection, wavelet decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373236 A Novel Convergence Accelerator for the LMS Adaptive Algorithm
Authors: Jeng-Shin Sheu, Jenn-Kaie Lain, Tai-Kuo Woo, Jyh-Horng Wen
Abstract:
The least mean square (LMS) algorithmis one of the most well-known algorithms for mobile communication systems due to its implementation simplicity. However, the main limitation is its relatively slow convergence rate. In this paper, a booster using the concept of Markov chains is proposed to speed up the convergence rate of LMS algorithms. The nature of Markov chains makes it possible to exploit the past information in the updating process. Moreover, since the transition matrix has a smaller variance than that of the weight itself by the central limit theorem, the weight transition matrix converges faster than the weight itself. Accordingly, the proposed Markov-chain based booster thus has the ability to track variations in signal characteristics, and meanwhile, it can accelerate the rate of convergence for LMS algorithms. Simulation results show that the LMS algorithm can effectively increase the convergence rate and meantime further approach the Wiener solution, if the Markov-chain based booster is applied. The mean square error is also remarkably reduced, while the convergence rate is improved.Keywords: LMS, Markov chain, convergence rate, accelerator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763235 Development of Orbital TIG Welding Robot System for the Pipe
Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim
Abstract:
This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).
Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3867234 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series
Authors: Chokri Slim
Abstract:
The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.
Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011233 A Real-time Computer Vision System for VehicleTracking and Collision Detection
Authors: Mustafa Kisa, Fatih Mehmet Botsali
Abstract:
Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.
Keywords: Image possessing, vehicle tracking, license plate detection, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099232 Empirical Study from Final Exams of Computer Science Courses Demystifying the Notion of 'an Average Software Engineer'
Authors: Alex Elentukh
Abstract:
The paper is based on data collected from final exams administered during five years teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of on-line graduate students in computer science. Conclusions of the study (each learner is unique and each class is unique) are extrapolated to demystify the notion of an 'average software engineer'. An immediate direction for an educator is to assure a course applies to a wide audience of very different individuals. On another hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.
Keywords: K.3.2 computer & information science education, learner profiling, adaptive learning, software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647231 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm
Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho
Abstract:
Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.
Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987230 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.
Keywords: Settlement, subway line, FLAC3D, ANFIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094229 The Spiral_OWL Model – Towards Spiral Knowledge Engineering
Authors: Hafizullah A. Hashim, Aniza. A
Abstract:
The Spiral development model has been used successfully in many commercial systems and in a good number of defense systems. This is due to the fact that cost-effective incremental commitment of funds, via an analogy of the spiral model to stud poker and also can be used to develop hardware or integrate software, hardware, and systems. To support adaptive, semantic collaboration between domain experts and knowledge engineers, a new knowledge engineering process, called Spiral_OWL is proposed. This model is based on the idea of iterative refinement, annotation and structuring of knowledge base. The Spiral_OWL model is generated base on spiral model and knowledge engineering methodology. A central paradigm for Spiral_OWL model is the concentration on risk-driven determination of knowledge engineering process. The collaboration aspect comes into play during knowledge acquisition and knowledge validation phase. Design rationales for the Spiral_OWL model are to be easy-to-implement, well-organized, and iterative development cycle as an expanding spiral.Keywords: Domain Expert, Knowledge Base, Ontology, Software Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767228 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: Phase locked loop, PLL, notch filter, fuzzy logic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762227 Intelligent Automatic Generation Control of Two Area Interconnected Power System using Hybrid Neuro Fuzzy Controller
Abstract:
This paper presents the development and application of an adaptive neuro fuzzy inference system (ANFIS) based intelligent hybrid neuro fuzzy controller for automatic generation control (AGC) of two-area interconnected thermal power system with reheat non linearity. The dynamic response of the system has been studied for 1% step load perturbation in area-1. The performance of the proposed neuro fuzzy controller is compared against conventional proportional-integral (PI) controller, state feedback linear quadratic regulator (LQR) controller and fuzzy gain scheduled proportionalintegral (FGSPI) controller. Comparative analysis demonstrates that the proposed intelligent neuro fuzzy controller is the most effective of all in improving the transients of frequency and tie-line power deviations against small step load disturbances. Simulations have been performed using Matlab®.
Keywords: Automatic generation control, ANFIS, LQR, Hybrid neuro fuzzy controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682226 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562225 Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller
Authors: U. Ramesh Babu, V. Vijay Kumar Reddy, S. Tara Kalyani
Abstract:
The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synchronous resonances and increase transient stability. Hence, UPFC is used to damp the oscillations occurred in Power system. This research focuses on adapting the neuro fuzzy controller for the UPFC design by connecting the infinite bus (SMIB - Single machine Infinite Bus) to a linearized model of synchronous machine (Heffron-Phillips) in the power system. This model gains the capability to improve the transient stability and to damp the oscillations of the system.Keywords: Power System, UPFC, (ANFIS) Adaptive Neuro Fuzzy Inference System, transient, Low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996224 Energy Management System and Interactive Functions of Smart Plug for Smart Home
Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya
Abstract:
Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.Keywords: Energy management, load profile, smart plug, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396223 Signal Driven Sampling and Filtering a Promising Approach for Time Varying Signals Processing
Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin
Abstract:
The mobile systems are powered by batteries. Reducing the system power consumption is a key to increase its autonomy. It is known that mostly the systems are dealing with time varying signals. Thus, we aim to achieve power efficiency by smartly adapting the system processing activity in accordance with the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting signal driven sampling and processing. In this context, a signal driven filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by analysing the input signal local variations. Thus, it correlates the processing activity with the signal variations. It leads towards a drastic computational gain of the proposed technique compared to the classical one.Keywords: Level Crossing Sampling, Activity Selection, Adaptive Rate Filtering, Computational Complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360222 Development of Web-Based Remote Desktop to Provide Adaptive User Interfaces in Cloud Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud virtualization technologies are becoming more and more prevalent, cloud users usually encounter the problem of how to access to the virtualized remote desktops easily over the web without requiring the installation of special clients. To resolve this issue, we took advantage of the HTML5 technology and developed web-based remote desktop. It permits users to access the terminal which running in our cloud platform from anywhere. We implemented a sketch of web interface following the cloud computing concept that seeks to enable collaboration and communication among users for high performance computing. Given the development of remote desktop virtualization, it allows to shift the user’s desktop from the traditional PC environment to the cloud platform, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.
Keywords: Virtualization, Remote Desktop, HTML5, Cloud Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251221 Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems
Authors: Sui Xin, Li Chunsheng, Tian Di
Abstract:
Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.
Keywords: Delay, SMS, reliability, distributed monitoringsystem (DMS), wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703220 New Efficient Method for Coding Color Images
Authors: Walaa M.Abd-Elhafiez, Wajeb Gharibi
Abstract:
In this paper a novel color image compression technique for efficient storage and delivery of data is proposed. The proposed compression technique started by RGB to YCbCr color transformation process. Secondly, the canny edge detection method is used to classify the blocks into the edge and non-edge blocks. Each color component Y, Cb, and Cr compressed by discrete cosine transform (DCT) process, quantizing and coding step by step using adaptive arithmetic coding. Our technique is concerned with the compression ratio, bits per pixel and peak signal to noise ratio, and produce better results than JPEG and more recent published schemes (like CBDCT-CABS and MHC). The provided experimental results illustrate the proposed technique that is efficient and feasible in terms of compression ratio, bits per pixel and peak signal to noise ratio.
Keywords: Image compression, color image, Q-coder, quantization, edge-detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670219 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.
Keywords: Energy-efficient, fog computing, IoT, telehealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145218 Soil Moisture Control System: A Product Development Approach
Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni
Abstract:
In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.
Keywords: Agriculture, human factors, product design, soil moisture control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309217 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric
Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah
Abstract:
Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.
Keywords: Image registration, mutual information, image gradients, Image transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895