Search results for: Corrugated composite specimens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1044

Search results for: Corrugated composite specimens

324 Application of Flexi-Wall in Noise Barriers Renewal

Authors: B. Daee, H. M. El Naggar

Abstract:

This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.

Keywords: Noise barrier, Polyurethane Foam, Accelerated construction, Full-scale experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
323 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Authors: A. Boudjemai, A. Zafrane, R. Hocine

Abstract:

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Keywords: Optimization, Gravitational search algorithm, Genetic algorithm, Honeycomb plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3293
322 Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization

Authors: Sang-Rak Kim, Jea-Yong Park, Won-Goo Lee, Jin-Shik Yu, Seog-Young Han

Abstract:

This paper presents a Reliability-Based Topology Optimization (RBTO) based on Evolutionary Structural Optimization (ESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic Topology Optimization (DTO) is obtained without considering of the uncertainties related to the uncertainty parameters. However, RBTO involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). Limit state function is approximated using Monte Carlo Simulation and Central Composite Design for reliability analysis. ESO, one of the topology optimization techniques, is adopted for topology optimization. Numerical examples are presented to compare the DTO with RBTO.

Keywords: Evolutionary Structural Optimization, PerformanceMeasure Approach, Reliability-Based Topology Optimization, Reliability Index Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803
321 A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.

Keywords: Interface, pull-out, processing, temperature, hemp, polypropylene, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
320 Eco-Friendly Natural Filler Based Epoxy Composites

Authors: Suheyla Kocaman, Gulnare Ahmetli

Abstract:

In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.

Keywords: Biobased composite, epoxy resin, mechanical properties, natural fillers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
319 Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools.

For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens. 

Keywords: SPD, ECAP, Pure Cu, Impact property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
318 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes

Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad

Abstract:

Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.

Keywords: Bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
317 Mechanical Behavior of Geosynthetics vs. the Combining Effect of Aging, Temperature, and Internal Structure

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno

Abstract:

Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them, have been mechanically tested at mild temperature (20 ºC or 23 ºC) and at warm temperature (45 ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45 ºC tests, a heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior has been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.

Keywords: Aging, geosynthetics, internal structure, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63
316 Entanglement-based Quantum Computing by Diagrams of States

Authors: Sara Felloni, Giuliano Strini

Abstract:

We explore entanglement in composite quantum systems and how its peculiar properties are exploited in quantum information and communication protocols by means of Diagrams of States, a novel method to graphically represent and analyze how quantum information is elaborated during computations performed by quantum circuits. We present quantum diagrams of states for Bell states generation, measurements and projections, for dense coding and quantum teleportation, for probabilistic quantum machines designed to perform approximate quantum cloning and universal NOT and, finally, for quantum privacy amplification based on entanglement purification. Diagrams of states prove to be a useful approach to analyze quantum computations, by offering an intuitive graphic representation of the processing of quantum information. They also help in conceiving novel quantum computations, from describing the desired information processing to deriving the final implementation by quantum gate arrays.

Keywords: Diagrams of states, entanglement, quantum circuits, quantum information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
315 The Relationship of the Dentate Nucleus with the Pyramid of Vermis: A Microneurosurgical Anatomical Study

Authors: Santhosh K. S. Annayappa, Nupur Pruthi

Abstract:

The region of dentate nucleus is a common site for various pathologies like hematomas, tumours, etc. We aimed to study in detail the relationship of this region with the vermis, especially the pyramid using microscopic fibre dissection technique. To achieve this aim, 20 cerebellar hemispheres were studied from the 11 cerebellums. Dissection was performed using wooden spatulas and micro dissectors under a microscope following Klingler’s preservation technique. The relationship between the pyramid of vermis and the dentate nucleus was studied in detail. A similar relationship was studied on the MRI of randomly selected trigeminal neuralgia patients and correlated with anatomical findings. Results show the mean distance of the lateral margin of the dentate nucleus from the midline on anatomic specimens was 21.4 ± 1.8 mm (19-25 mm) and 23.4 ± 3.4 mm (15-29 mm) on right and left side, respectively. Similar measurements made on the MRI were 22.97 ± 2.0 mm (20.03-26.15 mm) on the right side and 23.98 ± 2.1 mm (21.47-27.67 mm) on the left side. The amount of white matter dissection required to reach the dentate nucleus at the pyramidal attachment area was 7.3 ± 1.0 mm (6-9 mm) on the right side and 6.8 ± 1.4 mm (5-10 mm) on the left side. It was concluded that the pyramid of vermis has a constant relationship with the dentate nucleus and can be used as an excellent landmark during surgery to localise the dentate nucleus on the suboccipital surface.

Keywords: Fiber dissection, micro neurosurgery, dentate nucleus of cerebellum, pyramid of vermis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
314 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh

Abstract:

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Keywords: Disturbed state concept, hierarchical single surface, failure criterion, high performance concrete, high-strength concrete, nonlinear finite element analysis, polymer concrete, steel fibers, uniaxial compression test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
313 Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay

Authors: A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.

Keywords: Nanobentonite particles, clayey soil, unconfined compression stress, soil improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
312 Design and Optimization of a Microstrip Patch Antenna for Increased Bandwidth

Authors: Ankit Jain, Archana Agrawal

Abstract:

With the ever-increasing need for wireless communication and the emergence of many systems, it is important to design broadband antennas to cover a wide frequency range. The aim of this paper is to design a broadband patch antenna, employing the three techniques of slotting, adding directly coupled parasitic elements, and fractal EBG structures. The bandwidth is improved from 9.32% to 23.77%. A wideband ranging from 4.15 GHz to 5.27 GHz is obtained. Also a comparative analysis of embedding EBG structures at different heights is also done. The composite effect of integrating these techniques in the design provides a simple and efficient method for obtaining low profile, broadband, high gain antenna. By the addition of parasitic elements the bandwidth was increased to only 18.04%. Later on by embedding EBG structures the bandwidth was increased up to 23.77%. The design is suitable for variety of wireless applications like WLAN and Radar Applications.

Keywords: Bandwidth, broadband, EBG structures, parasitic elements, Slotting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
311 Study on the Presence of Protozoal Coinfections among Patients with Pneumocystis jirovecii Pneumonia in Bulgaria

Authors: N. Tsvetkova, R. Harizanov A. Ivanova, I. Rainova, N. Yancheva-Petrova, D. Strashimirov, R. Enikova, M. Videnova, E. Kaneva, I. Kaftandjiev, V. Levterova, I. Simeonovski, N. Yanev, G. Hinkov

Abstract:

The Pneumocystis jirovecii (P. jirovecii) and protozoan of the genera Acanthamoeba, Cryptosporidium, and Toxoplasma gondii are opportunistic pathogens that can cause life-threatening infections in immunocompromised patients. Aim of the study was to evaluate the coinfection rate with opportunistic protozoal agents among Bulgarian patients diagnosed with P. jirovecii pneumonia. 38 pulmonary samples were collected from 38 patients (28 HIV-infected) with P. jirovecii infection. P. jirovecii DNA was detected by real-time PCR targeting the large mitochondrial subunit ribosomal RNA gene. Acanthamoeba was determined by genus-specific conventional PCR assay. Real-time PCR for the detection of a Toxoplasma gondii and Cryptosporidium DNA fragment was used. Pneumocystis DNA was detected in all 38 specimens; 28 (73.7%) were from HIV-infected patients. Three (10,7%) of them were coinfected with T. gondii and 1 (3.6%) with Cryptosporidium. In the group of non-HIV-infected (n = 10), Cryptosporidium DNA was detected in an infant (10%). Acanthamoeba DNA was not found in the tested samples. The current study showed a relatively low rate of coinfections of Cryptosporidium spp./T. gondii and P. jirovecii in the Bulgarian patients studied.

Keywords: Coinfection, opportunistic protozoal agents, Pneumocystis jirovecii, pulmonary infections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242
310 Phenols and Manganese Removal from Landfill Leachate and Municipal Wastewater Using the Constructed Wetland

Authors: Amin Mojiri, Lou Ziyang

Abstract:

Constructed Wetland (CW) is a reasonable method to treat wastewater. Current study was carried out to co-treat landfill leachate and domestic wastewater using a CW system. Typha domingensis was transplanted to CW, which encloses two substrate layers of adsorbents named ZELIAC and zeolite. Response surface methodology and central composite design were employed to evaluate experimental data. Contact time (h) and leachate-towastewater mixing ratio (%; v/v) were selected as independent factors. Phenols and manganese removal were selected as dependent responses. At optimum contact time (48.7 h) and leachate-towastewater mixing ratio (20.0%), removal efficiencies of phenols and manganese removal efficiencies were 90.5%, and 89.4%, respectively.

Keywords: Constructed wetland, manganese, phenols, Thypha domingensis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
309 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs

Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan

Abstract:

The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.

Keywords: Dry powder technique, PEKK, S-glass, thermoplastic prepreg.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
308 Fretting Fatigue behavior of Bolted Single Lap Joints of Aluminum Alloys

Authors: Hadi Rezghi Maleki, Babak Abazadeh

Abstract:

In this paper, the effect of bolt clamping force on the fatigue behavior of bolted single lap joints of aluminum alloy 2024- T3 have been studied using numerical finite element method. To do so, a three dimensional model according to the bolted single lap joint has been created and numerical analysis has been carried out using finite element based package. Then the stress distribution and also the slip amplitudes have been calculated in the critical regions and the outcome have been compared with the available experimental fatigue tests results. The numerical results show that in low applied clamping force, the fatigue failure of the specimens occur around the stress concentration location (the bolted hole edge) due to the tensile stresses and thus fatigue crack propagation, but with increase of the clamping force, the fatigue life increases and the cracks nucleate and propagate far from the hole edge because of fretting fatigue. In other words, with the further increase of clamping force value of the joint, the fatigue life reduces due to occurrence of the fretting fatigue in the critical location where the slip amplitude is within its critical occurs earlier.

Keywords: Fretting fatigue, bolted single lap joint, torque tightening, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
307 The Measurement of Endogenous Higher-Order Formative Composite Variables in PLS-SEM: An Empirical Application from CRM System Development

Authors: Samppa Suoniemi, Harri Terho, Rami Olkkonen

Abstract:

In recent methodological articles related to structural equation modeling (SEM), the question of how to measure endogenous formative variables has been raised as an urgent, unresolved issue. This research presents an empirical application from the CRM system development context to test a recently developed technique, which makes it possible to measure endogenous formative constructs in structural models. PLS path modeling is used to demonstrate the feasibility of measuring antecedent relationships at the formative indicator level, not the formative construct level. Empirical results show that this technique is a promising approach to measure antecedent relationships of formative constructs in SEM.

Keywords: CRM system development, formative measures, PLS path modeling, research methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
306 Winged Test Rocket with Fully Autonomous Guidance and Control for Realizing Reusable Suborbital Vehicle

Authors: Koichi Yonemoto, Hiroshi Yamasaki, Masatomo Ichige, Yusuke Ura, Guna S. Gossamsetti, Takumi Ohki, Kento Shirakata, Ahsan R. Choudhuri, Shinji Ishimoto, Takashi Mugitani, Hiroya Asakawa, Hideaki Nanri

Abstract:

This paper presents the strategic development plan of winged rockets WIRES (WInged REusable Sounding rocket) aiming at unmanned suborbital winged rocket for demonstrating future fully reusable space transportation technologies, such as aerodynamics, Navigation, Guidance and Control (NGC), composite structure, propulsion system, and cryogenic tanks etc., by universities in collaboration with government and industries, as well as the past and current flight test results.

Keywords: Autonomous guidance and control, reusable rocket, space transportation system, suborbital vehicle, winged rocket.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
305 Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase

Authors: N. M. Ahmad, J. Abdullah, N. I. Ramli, S. Abd Rahman, N. E. Azmi, Z. Hamzah, A. Saat, N. H. Rahman

Abstract:

A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified with the CTAB/PEG/ZrO2/GOx showed electrocatalytical response to the oxidation of glucose when ferrocene carboxaldehyde was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). Several parameters such as working potential, effect of pH and effect of ZrO2/PEG layers that governed the analytical performance of the biosensor, have been studied. The biosensor was applied to detect glucose with a linear range of 0.4 to 2.0 mmol L−1 with good repetability and reproducibility.

Keywords: Nanocomposite, Nanoparticles, Modified SPE, Ferrocenecarboxaldehyde.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
304 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels

Authors: O. Altuntaş, A. Güral

Abstract:

The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.

Keywords: Powder metallurgy steel, heat treatment, bainite, spherical cementite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
303 FEA Modeling of Material Removal Rate in Electrical Discharge Machining of Al6063/SiC Composites

Authors: U. K. Vishwakarma , A. Dvivedi, P. Kumar

Abstract:

Metal matrix composites (MMC) are generating extensive interest in diverse fields like defense, aerospace, electronics and automotive industries. In this present investigation, material removal rate (MRR) modeling has been carried out using an axisymmetric model of Al-SiC composite during electrical discharge machining (EDM). A FEA model of single spark EDM was developed to calculate the temperature distribution.Further, single spark model was extended to simulate the second discharge. For multi-discharge machining material removal was calculated by calculating the number of pulses. Validation of model has been done by comparing the experimental results obtained under the same process parameters with the analytical results. A good agreement was found between the experimental results and the theoretical value.

Keywords: Electrical Discharge Machining, FEA, Metal matrix composites, Multi-discharge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3736
302 Developing Measurement Model of Interpersonal Skills of Youth

Authors: Mohd Yusri Ibrahim

Abstract:

Although it is known that interpersonal skills are essential for personal development, the debate however continues as to how to measure those skills, especially in youths. This study was conducted to develop a measurement model of interpersonal skills by suggesting three construct namely personal, skills and relationship; six function namely self, perception, listening, conversation, emotion and conflict management; and 30 behaviours as indicators. This cross-sectional survey by questionnaires was applied in east side of peninsula of Malaysia for 150 respondents, and analyzed by structural equation modelling (SEM) by AMOS. The suggested constructs, functions and indicators were consider accepted as measurement elements by observing on regression weight for standard loading, average variance extracted (AVE) for convergent validity, square root of AVE for discriminant validity, composite reliability (CR), and at least three fit indexes for model fitness. Finally, a measurement model of interpersonal skill for youth was successfully developed.

Keywords: Interpersonal communication, interpersonal skill, youth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
301 Advanced Energy Absorbers Used in Blast Resistant Systems

Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physicomechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.

Keywords: Blast energy absorber, SHPB, expanded glass, expanded ceramics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
300 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

Authors: Nacim Khelil, Amar Kahil, Said Boukais

Abstract:

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Keywords: Compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
299 The Survey of the Buckling Effect of Laminated Plate under the Thermal Load using Complex Finite Strip Method

Authors: A.R.Nezamabadi, M.Mansouri Gavari, S.Mansouri, M.Mansouri Gavari

Abstract:

This article considers the positional buckling of composite thick plates under thermal loading . For this purpose , the complex finite strip method is used . In analysis of complex finite strip, harmonic complex function in longitudinal direction , cubic functions in transversal direction and parabola distribution of transverse shear strain in thickness of thick plate based on higherorder shear deformation theory are used . In given examples , the effect of angles of stratification , number of layers , dimensions ratio and length – to – thick ratio across critical temperature are considered.

Keywords: Thermal buckling , Thick plate , Complex finite strip , Higher – order shear deformation theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
298 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: Cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
297 The Utilisation of Two Types of Fly Ashes Used as Cement Replacement in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffill

Abstract:

This study represents the results of an experimental work using two types of fly ashes as a cement replacement in soft soil stabilisation. The fly ashes (FA1 and FA2) used in this study are by-products resulting from an incineration processes between 800 and 1200 ˚C. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were initially conducted on soil treated with different percentages of FA1 (0, 3, 6, 9, 12, and 15%) to identify the optimum FA1 content. Then FA1 was chemically activated by FA2 which has high alkalinity by blending the optimum content of FA1 with different portions of FA2. The improvement levels were evaluated dependent on the results obtained from consistency limits and compaction tests along with the results of unconfined compressive strength (UCS) tests which were conducted on specimens of soil treated with FA1 and FA2 and exposed to different periods of curing (zero, 7, 14, and 28 days). The results indicated that the FA1 and FA2 used in this study effectively improved the physical and geotechnical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.17 with 12% of FA1; however, there was a slight increase in IP with the use of FA2. Meanwhile, 12% of FA1 was identified as the optimum percentage improving the UCS of stabilised soil significantly. Furthermore, FA2 was found effective as a chemical activator to FA1 where the UCS was improved significantly after using FA2.

Keywords: Soft soil stabilisation, waste materials, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
296 Geometry Calibration Factors of Modified Arcan Fracture Test for Welded Joint

Authors: S. R. Hosseini, N. Choupani, A. R. M. Gharabaghi

Abstract:

In this study the mixed mode fracture mechanics parameters were investigated for high tensile steel butt welded joint based on modified Arcan test and finite element analysis was used to evaluate the effect of crack length on fracture criterion. The nondimensional stress intensity factors, strain energy release rates and Jintegral energy on crack tip were obtained for various in-plane loading combinations on Arcan specimen starting from pure mode-I to pure mode-II loading conditions. The specimen and apparatus were modeled by finite element method and analyzed under various loading angles (between 0 to 90 degrees with 15 degree interval) to simulate the pure mode-I, II and mixed mode fracture. Since the analytical results are independent from elasticity modules for isotropic materials, therefore the results in elastic fields can be used for Arcan specimens. The main objective of this study was to evaluate the geometric calibration factors for modified Arcan test specimen in order to obtain fracture toughness under mixed mode loading conditions.

Keywords: Arcan specimen, Geometric calibration factors, Mixed Mode, Fracture mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
295 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458