Search results for: SIMO (Single Input Multiple Output)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4635

Search results for: SIMO (Single Input Multiple Output)

3945 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
3944 A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts

Authors: Arnab Majumdar, Srimani Sen

Abstract:

In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p+pnn+ DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5×108 A/m2. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06×108 A/m2.

Keywords: Cubic ZnB-GaN, hexagonal 4H-SiC, Double drift impatt diode, millimeter wave, optimized bias current density, wide band gap semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
3943 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix

Authors: Tao Dai, Andy Adler, Behnam Shahrrava

Abstract:

This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.

Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
3942 Negative Slope Ramp Carrier Control for High Power Factor Boost Converters in CCM Operation

Authors: T. Tanitteerapan, E.Thanpo

Abstract:

This paper, a simple continuous conduction mode (CCM) pulse-width-modulated (PWM) controller for high power factor boost converters is introduced. The duty ratios were obtained by the comparison of a sensed signal from inductor current or switch current and a negative slope ramp carrier waveform in each switching period. Due to the proposed control requires only the inductor current or switch current sensor and the output voltage sensor, its circuit implementation was very simple. To verify the proposed control, the circuit experimentation of a 350 W boost converter with the proposed control was applied. From the results, the input current waveform was shaped to be closely sinusoidal, implying high power factor and low harmonics.

Keywords: High power factor converters, boost converters, low harmonic rectifiers, power factor correction, and current control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
3941 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
3940 Multi-View Neural Network Based Gait Recognition

Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie

Abstract:

Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
3939 A New Seed Projection Method for Solving Shifted Systems with Multiple Right-Hand Sides

Authors: Chao Li, Hao Liu

Abstract:

In this paper, we propose a new seed projection method for solving shifted systems with multiple right-hand sides. This seed projection method uses a seed selection strategy. Numerical experiments are presented to show the efficiency of the newly method.

Keywords: shifted systems, multiple right-hand sides, seed projection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
3938 Performance Evaluation of the OCDM/WDM Technique for Optical Packet Switches

Authors: V. Eramo, L. Piazzo, M. Listanti, A. Germoni, A Cianfrani

Abstract:

The performance of the Optical Code Division Multiplexing/ Wavelength Division Multiplexing (WDM/OCDM) technique for Optical Packet Switch is investigated. The impact on the performance of the impairment due to both Multiple Access Interference and Beat noise is studied. The Packet Loss Probability due to output packet contentions is evaluated as a function of the main switch and traffic parameters when Gold coherent optical codes are adopted. The Packet Loss Probability of the OCDM/WDM switch can reach 10-9 when M=16 wavelengths, Gold code of length L=511 and only 24 wavelength converters are used in the switch.

Keywords: Optical code division multiplexing, bufferless optical packet switch, performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
3937 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review

Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi

Abstract:

Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.

Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
3936 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method

Authors: Mat Syai'in, Adi Soeprijanto

Abstract:

An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.

Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
3935 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
3934 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, Nonlinearity distribution, Particle filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
3933 New Design of a Broadband Microwave Zero Bias Power Limiter

Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach

Abstract:

In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.

Keywords: Limiter, microstrip, zero-biais.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3790
3932 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza

Abstract:

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.

Keywords: Divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
3931 Sensitivity and Removed THD of a Phase- Cutting Dimmer

Authors: H. Fathabadi

Abstract:

In this paper, we consider a designed and implemented phase-cutting dimmer. In fact, the dimmer is closed loop and a microcontroller calculates and then regulates the firing delay angles of each channel. Depending on the firing angle, the harmonic distortion in the input current will not comply with international standards, such as IEC 61000-3-2 (class C equipments). For solving this problem, eight harmonic compensators have been added to the dimmer. So, the proposed dimmer has a little harmonic distortion in the input current whereas conventional phase-cutting dimmers are not so. Sensitivity and removed THD of the proposed dimmer will be presented.

Keywords: Dimmer, compensator, harmonic, dimming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
3930 Plug and Play Interferometer Configuration using Single Modulator Technique

Authors: Norshamsuri Ali, Hafizulfika, Salim Ali Al-Kathiri, Abdulla Al-Attas, Suhairi Saharudin, Mohamed Ridza Wahiddin

Abstract:

We demonstrate single-photon interference over 10 km using a plug and play system for quantum key distribution. The quality of the interferometer is measured by using the interferometer visibility. The coding of the signal is based on the phase coding and the value of visibility is based on the interference effect, which result a number of count. The setup gives full control of polarization inside the interferometer. The quality measurement of the interferometer is based on number of count per second and the system produces 94 % visibility in one of the detectors.

Keywords: single photon, interferometer, quantum key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
3929 Students´ Knowledge, or Random Choice in ESP?

Authors: Ivana Šimonová

Abstract:

As widely accepted, didactic multiple-choice tests are referred as a tool providing feedback easily and quickly. Despite the final test scores are corrected by a special formula and number of high plausibility distractors is taken into consideration, the results may be influenced by the random choice. The survey was held in three academic years at the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic, where the multiple-choice test scores were compared to the open-answer ones. The research sample included 567 respondents. The collected data were processed by the NCSS2007 statistic software by the method of frequency and multiple regression analysis and presented in the form of figures and tables. The results proved statistically significant differences in test scores in academic years 2 and 3, and were discussed from the point of the credit system and conditions for teaching/learning English in the Czech education system.

Keywords: ESP, higher education, multiple-choice test, open-answer test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
3928 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: Doubly linked list, parallel 2-opt, tour division, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
3927 Lane Changing and Merging Maneuvers of Carlike Robots

Authors: Bibhya Sharma, Jito Vanualailai, Ravindra Rai

Abstract:

This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers.

Keywords: Lane merging, Lyapunov-based control scheme, path-guidance principle, split/merge strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
3926 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor

Authors: E. Gnapowski, S. Gnapowski

Abstract:

This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.

Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
3925 An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks

Authors: Besa Muslimi, Miriam A. M. Capretz, Jagath Samarabandu

Abstract:

Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.

Keywords: fuzzy rule extraction, fuzzy systems, knowledgeacquisition, pattern recognition, artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
3924 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.

Keywords: Power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
3923 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
3922 Optimal and Generalized Multiple Descriptions Image Coding Transform in the Wavelet Domain

Authors: Bahi brahim, El hassane Ibn Elhaj, Driss Aboutajdine

Abstract:

In this paper we propose a Multiple Description Image Coding(MDIC) scheme to generate two compressed and balanced rates descriptions in the wavelet domain (Daubechies biorthogonal (9, 7) wavelet) using pairwise correlating transform optimal and application method for Generalized Multiple Description Coding (GMDC) to image coding in the wavelet domain. The GMDC produces statistically correlated streams such that lost streams can be estimated from the received data. Our performance test shown that the proposed method gives more improvement and good quality of the reconstructed image when the wavelet coefficients are normalized by Gaussian Scale Mixture (GSM) model then the Gaussian one ,.

Keywords: Multiple description coding (MDC), gaussian scale mixture (GSM) model, joint source-channel coding, pairwise correlating transform, GMDCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
3921 Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This study uses two-dimensional standard fuzzy sets to enhance multiple criteria decision-making analysis for passenger aircraft selection, allowing decision-makers to express judgments with uncertain and vague information. Using two-dimensional fuzzy numbers, three decision makers evaluated three aircraft alternatives according to seven decision criteria. A validity analysis based on two-dimensional standard fuzzy weighted geometric (SFWG) and two-dimensional standard fuzzy weighted average (SFGA) operators is conducted to test the proposed approach's robustness and effectiveness in the fuzzy multiple criteria decision making (MCDM) evaluation process. 

Keywords: Standard fuzzy sets (SFSs), aircraft selection, multiple criteria decision making, intuitionistic fuzzy sets (IFSs), SFWG, SFGA, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
3920 An Incomplete Factorization Preconditioner for LMS Adaptive Filter

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.

Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
3919 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
3918 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
3917 Pattern Recognition as an Internalized Motor Programme

Authors: M. Jändel

Abstract:

A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.

Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
3916 Multiple Object Tracking using Particle Swarm Optimization

Authors: Chen-Chien Hsu, Guo-Tang Dai

Abstract:

This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.

Keywords: multiple object tracking, particle swarm optimization, gray-level histogram, image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4100