A New Seed Projection Method for Solving Shifted Systems with Multiple Right-Hand Sides
Abstract:
In this paper, we propose a new seed projection method for solving shifted systems with multiple right-hand sides. This seed projection method uses a seed selection strategy. Numerical experiments are presented to show the efficiency of the newly method.
Keywords: shifted systems, multiple right-hand sides, seed projection.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087898
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490References:
[1] A. Feriani, F. Perotti, V. Simoncini, Iterative system solvers for the
frequency analysis of linear mechanical systems, Comput. Methods Appl.
Mech. and Engrg. 190 (13-14) (2000) 1719-1739.
[2] V. Simoncini, Restarted full orthogonalization method for shifted linear
systems, BIT (Numer. Math.) 43 (2003) 459-466.
[3] D. O’Leary, The block conjugate gradient algorithm and related methods,
Linear Algebra Appl. 29 (1980) 293-322.
[4] C. Smith, A. Peterson and R. Mittra, A conjugate gradient algorithm
for treatment of multiple incident electromagnetic fields, IEEE Trans.
Antennas Propagation 37 (1989) 1490-1493.
[5] R.W.Freund, Solution of shifted linear systems by quasi-minimal residual
iterations, Numerical Linear Algebra (1993) 101-121.
[6] A.Frommer and U.Glassner, Restarted GMRES for shifted linear systems,
SIAM J. Sci. Comput. 19 (1998) 15-26.
[7] GuiDing Gu, Wenyue Zhu, Seed projection methods for solving unsymmetric
shifted systems with multiple right-hand sides, Mathematica
Numerica Sinica 26 (2004) 211-224(In Chinese).
[8] GuiDing Gu, A seed method for solving nonsymmetric linear systems
with multiple right-hand sides, Intern. J. Computer Math. 79 (2002) 307-
326.
[9] V. Simoncini, E. Gallopolous, An iterative method for nonsymmetric
systems with multiple right-hand sides, SIAM J. Sci. Comput.16 (1995)
917-933.