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Abstract—In this paper, we present an evolving knowledge
extraction system named AKEOS (Automatic Knowledge Extraction
from Online Sources). AKEOS consists of two modules, including
a one-time learning module and an evolving learning module.
The one-time learning module takes in user input query, and
automatically harvests knowledge from online unstructured resources
in an unsupervised way. The output of the one-time learning is a
structured vector representing the harvested knowledge. The evolving
learning module automatically schedules and performs repeated
one-time learning to extract the newest information and track the
development of an event. In addition, the evolving learning module
summarizes the knowledge learned at different time points to produce
a final knowledge vector about the event. With the evolving learning,
we are able to visualize the key information of the event, discover
the trends, and track the development of an event.

Keywords—Evolving learning, knowledge extraction, knowledge
graph, text mining.

I. INTRODUCTION

THE information on the Internet is overwhelming us. Even

for the result of a single query on a search engine, it

is hard to quickly grasp the key information underlying the

returned search results. Traditional media and social media are

also shortening our attentions and shifting our focuses with the

news flash that we usually may not be able to keep up with. In

order to address this problem, automatic knowledge extraction

has been proposed.

A few open information extraction (OIE) systems have been

developed. As stated in [1], an OIE system takes in a corpus

of texts, without any a priori knowledge or specification of the

relations of interest, and outputs a set of extracted relations.

One example work is KnowItAll [2], which is an information

extraction system that addresses the challenge of automated

information extraction by learning to label its own training

examples. KnowItAll sets a foundation of modern OIE system

but it requires a large amount of data from search engine

to train and learn relations. The more recent TextRunner [3],

however, learns a general model of how relations are expressed

in a particular language using CRF paradigm, in this way,

it not only reduces the error rate of KnowItAll, but also

save the time when learning new relations. Recently, SemIE

is proposed in [4], which extends TextRunner and exploits

the predicate-argument structure of a text to handle complex

sentences.

In recent years, evolving learning has received more and

more attentions. Different aspects of evolving learning in
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information retrieval and information extraction have been

investigated. reference [5] proposed a summarization method

to track the development of tweet stream. This work extracts

key phrases but does not discover the development of an event.

Reference [6] proposed a method to track the emerging topics

of streaming documents using dictionary learning. References

[7]-[9] investigated a specific time-related information retrieval

task, chronological citation recommendation, which utilized

different topic models to discover time-related features

of academic citations. In spite of the success of the

aforementioned work, each work only touches on one single

aspect of evolving learning. In this study, we present

our AKEOS (Automatic Knowledge Extraction from Online

Sources) which is an end-to-end system.

AKEOS consists of two main modules, including a one-time

learning module and an evolving learning module. The

one-time learning aims to distil the valuable information

from the overwhelmingly large volume of unstructured text

that search engine returns for one query, and output a

structured knowledge vector to summarize the query result.

The one-time learning extracts knowledge for one query

session and the knowledge extracted just reflects the event

until a particular time. As the event develops, new information

will be generated. The objective of the evolving learning is to

extract the knowledge of the new development of the event.

The user only needs to submit a query once, the evolving

learning mechanism in AKEOS automatically schedules and

performs the one-time knowledge extraction, and summarize

the knowledge extracted at a different time. Here, the

knowledge summarization is done through knowledge vector

merging, including attribute merging and value merging. The

end product is a knowledge vector. The final knowledge vector

summarizes the overall information of an event, while the

individual knowledge vectors generate at different time points

reflect how the event evolves over time.

In summary, AKEOS has the following merits:

1) It harvests unstructured text data from online resources,

distils the important information from the data to

produce structured knowledge vectors.

2) It is an end-to-end system, with query words as input,

knowledge vector as the end product.

3) It tracks the development of events and discovers the

underlying patterns.

II. SYSTEM ARCHITECTURE

AKEOS consists of two modules: one-time learning

and evolving learning. The one-time learning module is a
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Fig. 1 The AKEOS architecture

stand-alone system, while the evolving learning module is built

upon the one-time learning module. The system architecture

is shown in Fig. 1. The inputs to the one-time learning

system are query words from a user. The query words are

then used to crawl related documents from online resources.

Since Google ranks search results by relevance to the query,

top documents, say top 100 documents, are deemed “relevant

documents”. The one-time learning system first extracts the

main paragraph text from each document. Feature words are

then selected from the relevant documents. These feature

words are associated with key information of an event and

are used as a guide to relevant sentence selection. From these

relevant sentences, useful entities are extracted. Through this

procedure of knowledge extraction, the unstructured text is

transformed into a structured knowledge vector. Each time

the one-time learning is performed, the structured knowledge

vector will be stored in the knowledge base for further use.

The one-time learning module only extract the knowledge

of an event until a particular time point. The evolving learning
module schedules and performs repeated one-time learning at

different stages of an event to ensure the knowledge extracted

is up-to-date. The newly extracted knowledge will be merged

with previously extracted knowledge to form a new vector. For

example, after the first day of an event, the feature word list

for day 1 is learned, along with relevant sentences, extracted

useful entities and the knowledge vector v1 of the event for

day 1. After the second day, the feature word list based on

the newly published articles on day 2 are generated, along

with the corresponding relevant sentences, useful entities and

knowledge vector of v2. At the end of day 2, the knowledge

vectors of day 1 and day 2 are merged into a new vector,

denoted by u1. After n days, un−1 is learned and is treated

as final vector v = un−1. User can use the final vector v
to check the summarized knowledge of the event, and use

vi, i = 1, 2, . . . , n to review the development of the event.

With ui, i ∈ {1, . . . , n − 1}, user can also check how one

particular attribute changes over time in the corresponding

evolving learning graph.

III. ONE-TIME KNOWLEDGE EXTRACTION

One-time learning module takes in user query to crawl the

Internet for relevant articles and extract relevant information

from these article. One-time learning is the foundation of the

evolving learning module.

The module first takes in user query and use Google search

engine to search relevant articles on the Internet. We treat

the top 100 query results from Google as relevant articles.

After extracting the text from these webpages, we adopted

an enhanced TF-IDF method which combines the TF-IDF

measure with word frequencies from Google’s N-gram dataset

to measure the importance of the word in the context of the

user query in relation to a generic context. Extracted feature

words will be used in the following tasks, including one-time

learning and evolving learning.

Till now, the relevant documents concerning the query

words are collected, but not all the sentences are relevant

to the query words. Hence, feature words are used to select

the relevant sentences. For a sentence containing M words

in the corpus, each word is transformed into a vector, then

convoluted with each feature word vector. The sentence is

transformed into a vector with the length of M . A further

max pooling operation will select the most distinct feature in

the sentence. In this manner, a sentence with variable length

is transformed into a scalar. With a predefined threshold, the

relevant sentences are selected.

After relevant sentences are selected, the next step is to

extract entities containing useful information. In AKEOS, the

following are extracted as entities:

• Quantitative words, which are words associated with a

number, such as ‘deaths’, ‘people killed’, ‘missing’, ‘km’,

‘magnitude’.

• Geographic locations

• NER tags, such as date, time, location, person,

organization

After the entities are extracted, NER tagged properties,

quantitative properties, and other feature words are represented

as a knowledge vector. The knowledge vectors for the same
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Fig. 2 Example of knowledge vector of event “Tohoku earthquake”

Fig. 3 Example of knowledge graph of “Tohoku earthquake”

event on different days are then used as input for evolving

learning system. An example of the knowledge vector for the

query “Tohoku earthquake” is shown in Fig. 2. The knowledge

vector consists of three parts, including the NER features, the

quantitative features, and other feature words. The knowledge

vector can be visualized using D3.js [10] as shown in Fig. 3.

The center is the query word submitted by user, the feature

words are scattered around the query word in the level, and

the value of each feature words constitute the second level.

IV. EVOLVING LEARNING

The main motivation to develop evolving learning in

AKEOS is to introduce a time dimension to the query result

of an event. In one-time learning, after keying in the query

words, the system returns a knowledge graph as the result.

The Knowledge graph reveals key information about an event

based on the information extracted at the time. But for a

developing event, it is observed that

1) Facts update over time;

2) Media/Public attention shifts over time.

The above two characteristics raise the requirement to

automatically keep track of new information in a developing

event. For example, when 2015 Paris attack happened on

November 13th, the media mainly reported the locations of the

attack and a rough estimate of casualties on Day 1. On Day 3,

the news reports all gave an accurate casualty number. In the

meantime, the media started to report the possible perpetrator.

On Day 5, after identifying the perpetrator, the media started a

deeper investigation to find possible linking between the Syria

refugee and this attack, and discuss the refugee policy that

Belgium takes. This example exhibits how an event unfolds

through time, and how people and media attention changes

over time.

In our evolving learning system, the user only needs to

submit an event query, the system automatically runs the whole

knowledge learning process each day until no new information

is learned. After the process is done, the system automatically

summarizes the knowledge learned from the starting date of

the event while keeping the knowledge learned in each day.

The whole process is illustrated in Fig. 4. In the following,

we will explain the evolving learning in details.

A. Updating Event Vector

Facts about an event update every day, especially in the

first few days of an event. The one-time learning system

guarantees that the system extracts the correct information

from the documents collected in each day. On the other hand,

to reflect the changes and evolving trend, the latest knowledge
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Fig. 4 The evolving learning module architecture

vector must satisfy the following criteria:

• If two features are semantically similar, they should be

combined as one.

• If a feature word appears in every day’s knowledge vector,

the merged vector should keep its latest value.

• If a feature word does not appear every day, the merged

vector should keep its latest value.

• The merged vector on every day should be kept.

Automatically merging knowledge vector requires that the old

vector must be updated using the newly extracted knowledge

vector each day. This requires the system to perform feature

merging and value merging.

1) Feature Merging: In evolving learning system, after

several days’ of learning the development of the certain event,

the corresponding learned vector is accumulated, in order to

show the final knowledge graph, these vectors need to be

merged. If a new feature word wi has never been learned

in previous days’ feature word list, it will be automatically

inserted into the final feature word list; if a feature word wj

which has already been in previous day’s feature word list, the

system should merge the value of wj in the previous vector

and the value of wj in the current vector.

In some cases, a few different but semantically similar

words appear in the feature word list, for example, “injure”

and “wound”, “plant” and “building”. Keeping them all in the

final feature list has some short-comings:

• The final vector would be too long

• Values of the same entity is scattered under different

features

The first shortcoming is self-explanatory. The second

shortcoming will create redundant nodes in knowledge graph

of one-time learning. In evolving learning, it will create several

similar outcomes with missing information. For example, in

the “2015 Paris attack”, on Day 2, the word wound is one of

the feature words, and its value is 99, on Day 3, the word injure
is in the feature word list, and its value is 352. Clearly, both

wound and injure talks about the number of people injured in

the attack, the number increases as time goes by. As stated

above, the system should merge these two words together,

and save their corresponding value into knowledge vector. In

order to deal with this problem, following steps are adopted

in AKEOS:

• For any given feature word wi, check whether it is in

previous day’s feature list, if it already exists in the

feature word list, then merge the values of this feature

with previous days’ feature values(see Section IV-A2).

• If it is not in previous days’ feature word list, then select

5 sentences containing this word. Perform word sense

disambiguation to decide which meaning in the WordNet

this word adopted in this sentence, since a word may have

multiple meanings.

• After deciding the meaning of this word in the context, we

adopted lch similarity to calculate the differences between

this word to the existing feature word list.

We set the threshold of 2.15 of lch similarity as the default

value. Although there are other similarity measures similar to

lch, after experimenting the performance of these measures,

we found out that the key factor is the WordNet’s categories

playing the crucial role in this task, hence we continue to use

lch similarity to perform the feature merging task.

2) Value Merging:

Suicide bomb, Car bomb, car bomb, bomb,
Suicide car bomb, School bomb, suicide
bomb, Truck bomb, Bicycle bomb, suicide
bombing, Bomb, bomb vest, petrol bomb,
backpack bomb

The above paragraph shows an example of the values of

attack types in the database. To a human being, the attack

types are bombing, we need to merge them together as a single

item. For example, bomb or bombing contain the string bomb.

To merge them, we need to solve two problems:

1) Can they be merged together? Do they contain the same

string?

2) Which one should be selected to represent them?

To solve the first problem, we adopted fuzzy string matching

method to calculate the similarity of strings. We adopted

pywsd [11] to calculate the similarity and experimented several

thresholds to determine which parameter servers best to find
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the similar strings. We found that 2.15 is a suitable value since

it gives the best result.

To solve the second problem, we resort to Levenshtein

distance. In information theory and computer science, the

Levenshtein distance is a metric for measuring the difference

between two sequences. Informally, the Levenshtein distance

between two words is the minimum number of single-character

edits (i.e. insertions, deletions or substitutions) required to

change one word into the other. For example, the Levenshtein

distance between ”kitten” and ”sitting” is 3, since the

following three edits change one into the other, and there is

no way to do it with fewer than three edits:

1) kitten → sitten (substitution of ”s” for ”k”)

2) sitten → sittin (substitution of ”i” for ”e”)

3) sittin → sitting (insertion of ”g” at the end).

We use fuzzywuzzy Python package1 to calculate the

Levenshtein distance between strings and use 70 as the

threshold to select the similar string. After the processing

above, the remaining strings can be seen as similar strings

with the same meaning, and the shortest string is selected to

represent the whole group.

B. Stopping Criteria

One of the key issues in evolving learning is the stopping

criteria for knowledge learning. In AKEOS, particularly the

evolving learning system, the stopping point is the time when

the latest published documents concerning the query event

does not have or have very little new relevant information.

The key criteria here is to determine the degree of relevancy

of new information to the query. Take “2015 Paris attack”

as an example, if this query term is put into Google, new

documents will still be returned but few of them will be about

the event, instead, most of them will be about subject remotely

relevant to this event. In order to find the stopping criteria, we

monitored three events:

• Jakarta bombing

• Istanbul bombing

• Burkina Faso attack

In these three events, Istanbul bombing is a big event

which attracted a lot of media coverage; Jakarta bombing
is a relatively small event compared with Istanbul bombing;

Burkina Faso attack is an even smaller event which did not

get a wide news coverage. We picked out these three different

scaled events with the aim to compare and find the stopping

criteria of evolving learning. Concerning the stopping criteria,

we compared two criteria:

• The number of features of Day i compared with the

number of features of Day i − 1, which is called daily
difference

• The number of features of Day i compared with the

number of features of all previous days, which is called

accumulated difference
Figs. 5-7 show the daily difference values for Jakarta

bombing, Istanbul bombing and Burkina Faso attack
respectively. The x-axis shows the crawling day, starting from

1https://github.com/seatgeek/fuzzywuzzy

day 0; the y-axis shows the daily difference in percentage. For

example, in Fig. 5, the first bar’s y value reads 88%, which

means that the 2nd days’ feature list contains 88% of the word

in 1st days’ feature list.

Fig. 5 Daily difference of the query “Jakarta bombing”

Fig. 6 Daily difference of the query “Istanbul bombing”

From Figs. 5-7, we can see that in both small events with

little coverage or big event with wide coverage, the number of

feature words changes day to day. There is no clear indication

on how these feature words changes, for some days, feature

word number decrease compared with the previous day, while

for some days, feature word number increase compared with

the previous day. Next, we turn to analyze the accumulated
difference factor.

Figs. 8-10 show the accumulated difference of each day’s

feature word number to accumulated feature word list. The

x-axis indicates the day, and the y-axis shows the percentage

of accumulated difference. The positive values in the figure

show that this day’s feature word list contain new feature

word which has never occurred in previous days’ feature word

list, the negative values indicate that this days’ feature words’

number decreased. The accumulated difference figures also

give a mixed result on evaluating the new information based
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Fig. 7 Daily difference of the query “Burkina Faso attack”

Fig. 8 Accumulated difference of the query “Jakarta bombing”

Fig. 9 Accumulated difference of the query “Istanbul bombing”

Fig. 10 Accumulated difference of the query “Burkina Faso attack”

on feature words. For big and small events, compared with

previously accumulated feature words, there is no clear

indication on which day the evolving learning should be

stopped. In these experiments, we use the query stopping day

as a parameter which can be set by the user to fit various

needs.

V. EVOLVING LEARNING EXAMPLES

With aforementioned learning process, we present examples

of evolving learning to validate the effectiveness of our system.

Fig. 11 Diagram showing the number changes of Zika infected case number
of evolving learning result of query “Singapore Zika outbreak”

For query “Singapore Zika outbreak”, Fig. 11 reveals the

case number of first seven days of Singapore Zika virus

outbreak query result. The x-axis is the date, and the y-axis

shows the number of infected cases. The figure clearly shows

the sharp increase numbers of the infected case number.

For query “Pairs attack 2015”, Fig. 12 shows the number of

people killed in the first seven days of Paris attack. The x-axis

is the date, and the y-axis is the number of people killed. As

can be seen from the picture, the majority of the data points

showed the number of the casualty of people, however, on

the second day, the number of people killed is 2, this is not

an error, this number reveals the number of the police officer
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Fig. 12 Diagram showing the number changes of people killed of evolving
learning result of query “Pairs attack 2015”

killed on that day. Since this is the focus of the media on the

second day, the system automatically picks up this number.

VI. CONCLUSION

In this paper, we have presented an evolving information

extraction system AKEOS that automatically harvests

knowledge from on-line resources. AKEOS consists of

two main modules, one-time learning module and evolving

learning module. The one-time learning module extracts

knowledge for one query, starting from feature word

extraction, relevant sentences extraction and useful entities

extraction. The whole process is performed in an unsupervised

manner. The one-time learning transforms the unstructured

text to structured knowledge vector and knowledge graph. The

evolving learning module is built upon the one-time learning

module, which extracts knowledge of an event in consecutive

days to discover trends and patterns. With daily extracted

knowledge vector, evolving learning module automatically

merge the new vector with existing vectors to reflect the latest

development of the event. When no new information appears,

the evolving learning module generates the evolving learning

graph for the user to view the trend of key information in the

event. In the future, we will investigate how to use multiple

sources to validate the accountability of extracted information.

REFERENCES

[1] J. Piskorski and R. Yangarber, Information Extraction: Past, Present
and Future. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
23–49.

[2] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked,
S. Soderland, D. S. Weld, and A. Yates, “Unsupervised named-entity
extraction from the web: An experimental study,” Artificial intelligence,
vol. 165, no. 1, pp. 91–134, 2005.

[3] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information
extraction from the web,” Communications of the ACM, vol. 51, no. 12,
pp. 68–74, 2008.

[4] S. S. Tan, T. Y. Lim, L.-K. Soon, and E. K. Tang, “Learning to extract
domain-specific relations from complex sentences,” Expert Systems with
Applications, vol. 60, pp. 107 – 117, 2016.

[5] L. Shou, Z. Wang, K. Chen, and G. Chen, “Sumblr: Continuous
summarization of evolving tweet streams,” in Proceedings of the 36th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’13. New York, NY, USA: ACM,
2013, pp. 533–542.

[6] S. P. Kasiviswanathan, P. Melville, A. Banerjee, and V. Sindhwani,
“Emerging topic detection using dictionary learning,” in Proceedings of
the 20th ACM International Conference on Information and Knowledge
Management, ser. CIKM ’11. New York, NY, USA: ACM, 2011, pp.
745–754.

[7] Z. Jiang, X. Liu, and L. Gao, “Dynamic topic/citation influence modeling
for chronological citation recommendation,” in Proceedings of the
5th International Workshop on Web-scale Knowledge Representation
Retrieval & Reasoning, ser. Web-KR ’14. New York, NY, USA: ACM,
2014, pp. 15–18.

[8] Z. Jiang, “Chronological scientific information recommendation via
supervised dynamic topic modeling,” in Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining, ser. WSDM
’15. New York, NY, USA: ACM, 2015, pp. 453–458.

[9] Z. Jiang, X. Liu, and L. Gao, “Chronological citation recommendation
with information-need shifting,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge
Management, ser. CIKM ’15. New York, NY, USA: ACM,
2015, pp. 1291–1300.

[10] S. Teller, Data Visualization with D3.Js. Packt Publishing, 2013.
[11] L. Tan, “Pywsd: Python implementations of word sense disambiguation

(wsd) technologies (software),” https://github.com/alvations/pywsd.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:11, No:6, 2017 

752International Scholarly and Scientific Research & Innovation 11(6) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
6,

 2
01

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

07
30

3.
pd

f


