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Abstract—In this paper we propose a Multiple Description Image
Coding(MDIC) scheme to generate two compressed and balanced
rates descriptions in the wavelet domain (Daubechies biorthogonal
(9, 7) wavelet) using pairwise correlating transform optimal and
application method for Generalized Multiple Description Coding
(GMDC) to image coding in the wavelet domain. The GMDC
produces statistically correlated streams such that lost streams can be
estimated from the received data. Our performance test shown that
the proposed method gives more improvement and good quality of
the reconstructed image when the wavelet coefficients are normalized
by Gaussian Scale Mixture (GSM) model then the Gaussian one ,.

Keywords—Multiple description coding (MDC), gaussian scale
mixture (GSM) model, joint source-channel coding, pairwise corre-
lating transform, GMDCT.

I. INTRODUCTION

THE main problem encountered in transmitting visual in-
formation over heterogeneous packet switched networks

is the rapid degradation in the reconstructed image quality due
to packet loss [1]. If packet retransmission is not guaranteed
as opposed to the TCP protocol [1], then we should think of
another appropriate mean to receive meaningful data despite
the loss of packets. This problem finds its natural solution
in the so-called multiple description framework [1]. Recently,
multiple description coding (MDC) has taken considerable
attention as a method of communication over unreliable packet
switched networks. MDC is a technique which can be con-
sidered a joint source-channel coding (JSC) code for erasure
channels [4]. It can efficiently combat packet loss without
any retransmission, thus not only guarantee the real-time
communication, but also relieve the network congestion. In
the MDC scheme, several representations of the source, called
descriptions, are generated. The descriptions are designed in
such a way that the quality of the received signal degrades
gracefully with the increase in the number of descriptions that
are lost. Also, the descriptions are designed so that the quality
of the reconstructed image is dependent only on the number
of received descriptions and not on which descriptions are
actually received.

II. MULTIPLE DESCRIPTION CODING

In this section, we describe two of the most popular
multiple description image coding techniques are multiple
description scalar quantization (MDSQ) [11] and pairwise
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correlating transform (PCT) [3]. A relatively new approach is
frame based multiple description (MD) image coding [14]. We
briefly review these techniques before describing our proposed
scheme. The fundamental idea behind PCT based multiple
description coding is the introduction of controlled redundancy
in the de-correlated source using a correlating transform. The
correlation thus introduced is used to estimate lost coefficients
from those received error-free. A popular DCT domain MD
image coding scheme is presented in [3]. It assumes that DCT
coefficients are uncorrelated and Gaussian distributed. Pairs
of DCT coefficients are correlated using a rotation matrix
and the resultant coefficients are treated as two descriptions.
These descriptions are entropy coded and packetized before
transmission over an erasure channel. The essence of MDSQ
is the simultaneous generation of two quantization indices
(instead of one) for every input. The two indices are generated
such that either index provides an acceptable reconstruction
level and a much higher quality reconstruction results from
the use of both indices. In wavelet based MDSQ image
coding, each sub-band is MD scalar quantized to generate two
descriptions followed by entropy coding. One of the first MDC
coder was designed by Vaishampayan [11] in which multiple
description scalar quantizers were used in an extension of the
old JPEG coder. Other methods for the design of MDC coders
use correlation-inducing transforms. Wang et al. [14], [13] ,
[12] and [5] proposed applying a pairwise correlating trans-
forms to introduce dependencies between two descriptions.
Goyal et al. further generalized Wang’s work to any number
of descriptions, and coined the term generalized multiple
description coding (GMDC) [4] and [10]. GMDC was later
applied to image coding with correlating transforms [10]and
[12]. Servetto has designed and implemented error-resilient
data compression algorithms based on the use of wavelets and
MD scalar quantizers [8]. Pereira [6] and Sumohana [9] have
studied MDC techniques based on wavelet transform, but not
considering correlating transforms in wavelet domain.

In this paper, we propose an error-resilient image com-
munications scheme that exploits the properties of the GSM
model and uses MDC techniques to achieve error resilience.
We first derive the redundancy rate-distortion function for
the pair-wise correlated GSM source. Finally, we simulate an
image communication system that uses an optimal pairwise
correlating transform to form multiple descriptions and we
simulate an image communication system that uses the trans-
form is implemented as parallel 2-by-2 transforms to form four
descriptions and uses an erasure channel.
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III. THE GAUSSIAN SCALE MIXTURE MODEL

In this section, we describe the model used to represent
the statistics of natural images in the wavelet domain. It has
been shown in [7]. That the statistics of wavelet coefficients
fit the GSM model very accurately. A random vector Y is
a GSM if it satisfies the relation Y = z.U where z is
a scalar random variable with z ≥ 0 and U ∼ N(0;Q)
is a Gaussian random vector and z, U are independent that
normalized wavelet coefficients U(Y/z) are jointly Gaussian.
Where, z corresponds to local standard deviation of wavelet
coefficients that scales the Gaussian random vector U . In
[7] show log histograms of raw(fY/z(Y/z)) and normalized
(fY/z(Y/z)) wavelet coefficients respectively. It is clear that
normalizing the coefficients makes them closer to a Gaussian
distribution.

IV. MD CODING WITH CORRELATING TRANSFORMS

In [7] description the redundancy rate-distortion function
for the pair-wise correlated GSM source based orthogonal
transform. In this paper using, optimal transforms that give
balanced rates [10], [4] the redundancy rate-distortion function
for the pair-wise correlated GSM source. We assume a two
channel scenario with channel failure probabilities p1 and p2

respectively. Since Y is a GSM random variable, the pdf of
the components of U i.e., u1 and u2 can be expressed as
fu1/z(u1/z) ∼ N(0; z2σ2

u1
) where z is the scalar random

variable (which is assumed to be known). We derive the ex-
pression for redundancy ρ at a given two channel distortion D0

needed to achieve a one-channel distortion D1. A correlating
transform T adds redundancy between transform coefficients
and give balanced rates is applied to the uncorrelated source
pair U = [u1; u2]T to generate V = [v1; v2]T i.e., V = TU .
We evaluate

Cov(V ) = E[V V T ]

as

Cov(V ) = TE[UUT ]TT (1)

where,

E[UUT ] =
(

z2σ2
u1

0
0 z2σ2

u2

)
Optimal Transforms that Give Balanced Rates:

T =
(

a 1/(2a)
−a 1/(2a)

)
Substituting T in (1)

Cov(V ) = z2.W

where,

W =

(
a2σ2

u1
+

σ2
u2

4a2 −a2σ2
u1

+
σ2

u2
4a2

−a2σ2
u1

+
σ2

u2
4a2 a2σ2

u1
+

σ2
u2

4a2

)

We now compute the redundancy (or excess rate) required
to encode V = [v1; v2]T with respect to the rate required
to encode U = [u1; u2]T at two-channel distortion D0. Let
Ru1,u2/zdenote the encode rate for U , and Rv1;v2/z denote

the encode rate for V . Since U ,V are conditionally Gaussian,
we can use the rate-distortion function for Gaussian variables
and arrive at

Ru1,u2/z =
1
2

log
z4σ2

u1
σ2

u2

D0
+ K (2)

Rv1,v2/z =
1
2

log
z4σ2

v1
σ2

v2

D0
+ K (3)

where, σv1 = σv2

Rv1,v2/z =
1
2

log
z4σ4

v1

D0
+ K (4)

ρ = Rv1,v2/z − Ru1,u2/z =
1
2

log
z4σ4

v1

z4σ2
u1

σ2
u2

(5)

ρ = log
σ2

v1

σu1σu2

(6)

Where K is a constant that accounts for entropy coding. We
observe that since we are conditioning on z, z needs to be sent
to the decoder without error for successful reconstruction. The
rate needed to encode z is lower bounded by its entropy h(z)
[7]. Therefore the total excess rate needed is bounded by

ρtot ≥ h(z) + ρ (7)

= h(z) + log
σ2

v1

σu1σu2

(8)

= log[T (γ)] + γ − (γ − 1)ψ(γ) + log
σ2

v1

σu1σu2

(9)

Where ψ(γ) is the digamma or psi function and T (γ)is the
Gamma function [7]. The single channel distortion D1 is
defined as the average single channel distortion per random
variable [14], [7]. Express the single channel distortion D1 in
terms of the excess rate in order to obtain the redundancy rate-
distortion bound [10]. Assuming p1 = p2 = 1/2 neglecting
effects of quantization and simplifying, we get,

D1(ρtot) = D2(ρtot)

= E[z2](
1
2
σ2

u2
+

σ2
u1

− σ2
u2

4.22ρ(22ρ +
√

24ρ − 1)
)

= E[z2](
σ2

u1
+ σ2

u2

4
− σ2

u1
− σ2

u2

4

√
1 − 2−4ρ) (10)

where ρ = (ρtot − h(z))
The MMSE optimal linear estimates Û (1) and Û (2) from

v1 and v2 respectively neglecting quantization noise are given
by:

Û (1) =
2a

4a4σ2
u1

+ σ2
u2

(
2a2σ2

u1

σ2
u2

)
v1 (11)
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Fig. 1. Theoretical redundancy rate-distortion plot

and

Û (2) =
2a

4a4σ2
u1

+ σ2
u2

( −2a2σ2
u1

σ2
u2

)
v2 (12)

Figure.1 shows the plot of the redundancy rate-distortion
function of the proposed multiple description coding system
is better than the case redundancy rate-distortion function
based orthogonal transform [7]. The figure is plotted for,
u1 ∼ N(0; 1) and u2 ∼ N(0; 0.16). We see that the theoretical
curve.

V. SYSTEM IMPLEMENTATION

The algorithm proposed in [7] based on transform orthog-
onal and in [2] the algorithm based on optimal transforms
that Give Balanced Rates basic premise of the proposed
algorithm is the fact that normalizing wavelet coefficients by
appropriate scale factors makes them Gaussian . Furthermore,
it is assumed pairs of wavelet coefficients are uncorrelated and
jointly Gaussian [7].

Implement the system is described below. The image is
sub-band decomposed to three levels using the Daubechies
biorthogonal (9,7) wavelet and decomposition applied on stan-
dard test image Zelda of size 512×512,shown in figure 2. The
low-low sub-band is assumed to be transmitted without error.
In order to normalize the wavelet coefficients, non-overlapping
blocks of size 4x4 are formed and the covariance matrix
Q and scaling factor estimate z are determined from these
blocks. Once z is estimated, the coefficients are normalized by
dividing them by z. The pairwise correlating transform is then
applied to the normalized coefficients. The resulting correlated
coef-ficients are transmitted over a pair of erasure channels
with erasure probability p1 = p2 = 1/2. Since z has to be
transmitted without error, it is sent over both channels. At the
receiver, lost normalized coefficients are estimated using the
MMSE estimator. The wavelet coefficient estimates are found
by multiplying the normalized coefficient estimates with z.

VI. THE GENERALIZED MULTIPLE DESCRIPTION IMAGE
CODING

A block of n independent, Zero-mean variables with dif-
ferent variances are transformed to a block of transform
coefficients in order to create a known statistical correlation
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Fig. 2. PSNR results for reconstruction from description 1 with GSM Model
and Gaussian Assumption

between transform co- efficients. The transform coefficients
from one block are distributed to different packets so in the
case of a packet loss, the lost coefficients can be estimated
from the received coefficients. The redundancy comes from
the relative inefficiency of scalar entropy coding on correlated
variables. This method is a generalization of the technique
proposed in [13], [5] for two channels. The coding of a source
vector x proceeds as follows:

1. x is quantized with a uniform scalar quantizer with step
size � : xqi = [xi]� where [.]� rounding to the nearest
Multiple of �.

2. The vector xq = [xq1 , xq2 , ..., xqn
]T is transformed with

an invertible, discrete transform T̂ :�Zn → �Zn,y = T̂ (xq).
3. The components of y are independently entropy coded.

The discrete transform is related to a continuous transform
T through ”lifting” Starting with a linear transform T with
determinant one, the first step in deriving a discrete version is
to factor into a product of upper and lower triangular matrices
with unit diagonals T = T1T2...Tk. The discrete version of
the transform is then given by

T̂ (xq) = [T̂1[T̂2...[T̂kxq]�]�]� (13)

The lifting structure ensures that the inverse of T̂ can be
implemented by reversing the calculations in (1):

T̂−1(y) = [T̂k
−1

...[T̂2
−1

[T̂1
−1

y]�]�]� (14)

When all the components of y are received, the reconstruction
process is to (exactly) invert the transform to get the distortion
is precisely the quantization error from Step 1.

If some components of y are lost, they are estimated
from the received components using the statistical correlation
introduced by the transform T̂ .

Recall that the variances of the components of x are
σ2

1 , σ2
2 , ..., σ2

N and denote the correlation matrix of x by
Rx = diag(σ2

1 , σ2
2 , ..., σ2

N ). With fine quantization, the cor-
relation matrix of y is Ry = TRxTT . By renumbering
the variables if necessary, assume that y1, y2, ..., yN−l are
received and yN−l+1, ..., yN are lost. Partition y into ”re-
ceived” and ”not received” portions as y = (ỹr, ˜ynr) where
ỹr = (y1, y2, ..., yN−l) and ˜ynr = (yN−l+1, ..., yN ). The
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Minimum MSE (MMSE) estimate of x given ỹr is E[x/ỹr] ,
which has a simple closed form because x is a jointly Gaussian
vector. Using the linearity of the expectation operator gives the
following sequence of calculations:

x̂ = E[x/ỹr] = E[T−1Tx/ỹr] = T−1E[Tx/ỹr]

= T−1E[
(

ỹr

˜ynr

)
|ỹr] = T−1

(
ỹr

E[ ˜ynr/ỹr]

)
(15)

If the correlation matrix of y is partitioned compatibly with
the partitioning of y as

Ry =
(

R1 B
BT R2

)
(16)

then ˜ynr/ỹr is a Gaussian random variable with mean
BT R−1ỹr and correlation matrix R2 −BT R−1BT Thus and
the reconstruction is

x̂ = T−1

(
I

BT R−1

)
ỹr (17)

The estimate x̂ is then generated by inverting T . The opti-
mal design of the transform T̂ for Gaussian sources, where
arbitrary (unequal, dependent) packet loss probabilities are al-
lowed, is discussed in [12]. Here we consider the simpler case
where packet losses are i.i.d. and the transform is implemented
as parallel and/or cascade combinations of 2-by-2 transforms.
It is shown in [12] that for coding a two-tuple source over two
channels, where each is equally like to fail, it is sufficient to
consider transforms of the form

T̂ =
(

α 1/(2α)
−α 1/(2α)

)
(18)

We use this as a building block to form larger trans-
forms. The transform used in this paper is parallel 2x2
transforms(pairing )

T =
(

Tα 0
0 Tβ

)
(19)

If Tα used to transform variables with variances σ2
1 and σ2

2

and Tβ is used to transform variables with variances σ2
3 and

σ2
4 then the equal-slope condition implies that we should have

β4 =
γ(16α8α4

1 − α4
2

√
γ2(16α8α4

1 − α4
2)2 + 64α8σ4

3σ4
4)

32α4σ4
3

where

γ =
σ2

3σ2
4(σ2

3 − σ2
4)

σ2
1σ2

2(σ2
1 − σ2

2)
(20)

VII. IMAGE COMMUNICATION SYSTEM

The generalized multiple descriptions image coding scheme
proposed in [3] works with discrete cosine transform (DCT)
coefficients. In this section, we propose a Generalized Multiple
Descriptions Image Coding scheme in the wavelet domain.
This to demonstrate the efficacy of the correlating transform
method for image coding, we consider the case of coding for
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Fig. 3. PSNR results for reconstruction results with 1 of 4 descriptions lost
and reconstruction results with 2 of 4 descriptions lost with GSM Model and
Gaussian Assumption

four channels. This method is designed to operate on source
vectors with uncorrelated components. We (approximately)
obtain such a condition by forming vectors from coefficients
wavelets. A straightforward application proceeds in the fol-
lowing steps:

The image is sub-band decomposed to three levels using
the Daubechies biorthogonal (9,7) wavelet and decomposi-
tion applied on standard test images Zelda, Lena of size
512 × 512,shown in figure 3 of image Zelda and Figure 2
of image Lena . The low-low subband is assumed to be
transmitted without error. In order to normalize the wavelet
coefficients, non-overlapping blocks of size 4x4 are formed
and the covariance matrix Q and scaling factor estimate z
are determined from these blocks. Once z is estimated, the
coefficients are normalized by dividing them by z. Correlating
transforms are applied to each 4-tuple is then applied to the
normalized coefficients. The resulting correlated coef-ficients
are transmitted over a four of erasure channels. Since z has to
be transmitted without error, it is sent over four channels. At
the receiver, lost normalized coefficients are estimated using
the MMSE estimator. The wavelet coefficient estimates are
found by multiplying the normalized coefficient estimates with
z.

the results of the above experiment on standard test images
of size 512x512. We clearly see from the figure 2 and
3 that using the GSM model results in an improvement
in the reconstructed image quality when compared to the
case where wavelet coefficients are assumed to be Gaussian.
GSM model performs better than the case where wavelet
coefficients are assumed to be Gaussian. In the figure 3
quality of the reconstructed image depends on the number of
descriptions arrived. In the figure 2 is summarized as follows:
The correlating transform with GSM model method is better at
low redundancies and the correlating transform with wavelet
coefficients are assumed to be Gaussian method is better at
high redundancies.

VIII. CONCLUSION

In this paper, we have considered a wavelet transform-
based MDCT and GMDTC coder for coding still images. Our
performance test shown that the proposed method gives more
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improvement and good quality of the reconstructed image
when the wavelet coefficients are normalized by Gaussian
Scale Mixture (GSM) model.

a
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