Search results for: Energy-saving thermal screen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1440

Search results for: Energy-saving thermal screen

750 In silico Studies on Selected Drug Targets for Combating Drug Resistance in Plasmodium falcifarum

Authors: D. Bhaskar, N. R. Wadehra, M. Gulati, A. Narula, R. Vishnu, G. Katyal

Abstract:

With drug resistance becoming widespread in Plasmodium falciparum infections, the development of the alternative drugs is the desired strategy for prevention and cure of malaria. Three drug targets were selected to screen promising drug molecules from the GSK library of 13469 molecules. Using an in silico structure-based drug designing approach, the differences in binding energies of the substrate and inhibitor were exploited between target sites of parasite and human to design a drug molecule against Plasmodium. The docking studies have shown several promising molecules from GSK library with more effective binding as compared to the already known inhibitors for the drug targets. Though stronger interaction has been shown by several molecules as compared to the reference, few molecules have shown the potential as drug candidates though in vitro studies are required to validate the results. In case of thymidylate synthase-dihydrofolatereductase (TS-DHFR), three compounds have shown promise for future studies as potential drugs.

Keywords: Drug resistance, Drug targets, In silico studies, Plasmodium falciparum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
749 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Keywords: artificial neural networks, aquaculture, forced circulation hot water system,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
748 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

During welding, the amount of heat present in weld zones determines the quality of weldment produced. Thus, the heat distribution characteristics and its magnitude in weld zones with respect to process variables such as tool pin-shoulder rotational and traveling speed during welding is analyzed using thermal finite element analyses method. For this purpose, transient thermal finite element analyses are performed to model the temperatures distribution and its quantities in weld-zones with respect to process variables such as rotational speed and traveling speed during welding. Commercially available software Altair HyperWork is used to model three-dimensional tool pin-shoulder vs. workpieces and to simulate the friction stir process. The results show that increasing tool rotational speed, at a constant traveling speed, will increase the amount of heat generated in weld-zones. In contrary, increasing traveling speed, at constant tool pin-shoulder rotational speeds, will reduce the amount of heat generated in weld zones.

Keywords: Frictions Stir Welding, Temperature Distribution, Finite Element Method, Altair Hyperwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3958
747 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir

Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder

Abstract:

22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.

Keywords: Catchment management, drinking water reservoir, multivariate curve resolution alternating least squares, thermal stratification, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
746 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement

Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana

Abstract:

The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.

Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
745 Impact of Nonthermal Pulsed Electric Field on Bioactive Compounds and Browning Activity in Emblica officinalis Juice

Authors: Vasudha Bansal, M. L. Singla, C. Ghanshyam

Abstract:

The effect of nonthermal pulsed electric field (PEF) and thermal treatment (90⁰C for 60s) was studied on quality parameters of emblica officinalis juice for the period of 6 weeks at 4⁰C using monopolar rectangular pulse of 1µs width. The PEF treatment was given using static chamber at 24kV/cm for 500µs. The quality of emblica officinalis juice was investigated in terms of non enzymatic browning index (NEBI), 5-hydroxymethyl-2-furfural (HMF), total polyphenol content and antioxidant capacity. ⁰Brix, pH and conductivity were evaluated as physical parameters. The aim of the work was to investigate the effect of PEF on the retention of bioactive compounds and retardation of browning activity. The results showed that conventional thermal treatment had led to a significant (p < 0.05) decrease of 48.15% in polyphenol content (129.56 mg of GAE L-1), with higher NEBI and HMF formation (p < 0.05) whilst PEF suppressed NEBI and retained higher polyphenol compounds (168.59 mg GAE L-1) with limiting the loss to 32.56% along maximum free radical scavenging activity (92.07%). However, pH, ⁰brix and electrical conductivity of treated juice samples remain unaffected. Therefore, PEF can be considered as an effective nonthermal treatment for retaining bioactive compounds along suppressing browning of emblica juice.

 

Keywords: Emblica officinalis juice, Free radical scavenging activity, Pulsed electric field, Total polyphenol content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
744 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Bachy, Joerg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multifunctional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: Laser Structuring, Simulation, Finite element analysis, Thermal modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4345
743 Development of Innovative Islamic Web Applications

Authors: Farrukh Shahzad

Abstract:

The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).

Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
742 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: Agro-industrial waste, biomass, briquettes, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
741 Construction of Water Electrolyzer for Single Slice O2/H2 Polymer Electrolyte Membrane Fuel Cell

Authors: May Zin Lwin., Mya Mya Oo

Abstract:

In the first part of the research work, an electrolyzer (10.16 cm dia and 24.13 cm height) to produce hydrogen and oxygen was constructed for single slice O2/H2 fuel cell using cation exchange membrane. The electrolyzer performance was tested with 23% NaOH, 30% NaOH, 30% KOH and 35% KOH electrolyte solution with current input 4 amp and 2.84 V from the rectifier. Rates of volume of hydrogen produced were 0.159 cm3/sec, 0.155 cm3/sec, 0.169 cm3/sec and 0.163 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution. Rates of volume of oxygen produced were 0.212 cm3/sec, 0.201 cm3/sec, 0.227 cm3/sec and 0.219 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution (1.5 L). In spite of being tested the increased concentration of electrolyte solution, the gas rate does not change significantly. Therefore, inexpensive 23% NaOH electrolyte solution was chosen to use as the electrolyte in the electrolyzer. In the second part of the research work, graphite serpentine flow plates, fiberglass end plates, stainless steel screen electrodes, silicone rubbers were made to assemble the single slice O2/H2 polymer electrolyte membrane fuel cell (PEMFC).

Keywords: electrolyzer, electrolyte solution, fuel cell, rectifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
740 Antioxidant Properties, Ascorbic Acid and Total Carotenoid Values of Sweet and Hot Red Pepper Paste: A Traditional Food in Turkish Diet

Authors: Kubra Sayin, Derya Arslan

Abstract:

Red pepper (Capsicum annum L.) has long been recognized as a good source of antioxidants, being rich in ascorbic acid and other phytochemicals. In Turkish cuisine red pepper is sometimes consumed raw in salads and baked as a garnish, but its most wide consumption type is red pepper paste. The processing of red pepper into pepper paste includes various thermal treatment steps such as heating and pasteurizing. There are reports demonstrating an enhancement or reduction in antioxidant activity of vegetables after thermal treatment. So this study was conducted to investigate the total phenolic, ascorbic acid and total carotenoids as well as free radical scavenging activity of raw red pepper and various red pepper pastes obtainable on the market. The samples were analyzed for radical-scavenging activity (RSA) and total polyphenol (TP) content using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Folin-Ciocalteu methods, respectively. Total carotenoids and ascorbic acid contents were determined spectrophotometrically. Results suggest that hot pepper paste contained significantly (P<0.05) higher concentrations of TP than sweet pepper paste. However there is no significant (P>0.05) difference in RSA, ascorbic acid and total carotenoids content between sweet and hot red pepper paste products. It is concluded that the red pepper paste, that has a wide range of consumption in Turkish cuisine, presents a good dose of phenolic compounds and antioxidant capacity and it should be regarded as a functional food.

Keywords: Antioxidant properties, Red pepper paste, Total carotenoids, Total phenolic content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
739 Study of Cross Flow Air-Cooling Process via Water-Cooled Wing-Shaped Tubes in Staggered Arrangement at Different Angles of Attack, Part 2: Heat Transfer Characteristics and Thermal Performance Criteria

Authors: Sayed Ahmed E. Sayed Ahmed, Emad Z. Ibrahiem, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ε) in terms of Rea, design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer was increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence η of studied bundle was occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: Wing-shaped tubes, Cross-flow cooling, Staggered arrangement, and CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
738 Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites

Authors: Teuku Rihayat, Suryani

Abstract:

Polyurethanes (PURs) are very versatile polymeric materials with a wide range of physical and chemical properties. PURs have desirable properties such as high abrasion resistance, tear strength, shock absorption, flexibility and elasticity. Although they have relatively poor thermal stability, this can be improved by using treated clay. Polyurethane/clay nanocomposites have been synthesized from renewable sources. A polyol for the production of polyurethane by reaction with an isocyanate was obtained by the synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (CTAB-mont) and octadodecylamine (ODAmont). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively and larger than that of the pure-mont (1.142 nm). The organoclay was completely intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The results showed that adding clay demonstrated better thermal stability in comparison with the virgin polyurethane. Onset degradation of pure PU is at 200oC, and is lower than that of the CTAB-mont PU and ODA-mont PU which takes place at about 318oC and 330oC, respectively. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites, were measured. The modified organoclay had a remarkably beneficial effect on the strength and elongation at break of the nanocomposites, which both increased with increasing clay content with the increase of the tensile strength of more than 214% and 267% by the addition of only 5 wt% of the montmorillonite CTAB-mont PU and ODA-mont PU, respectively.

Keywords: Polyurethane, Clay nanocomposites, Biobase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
737 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: Electromagnetic devices, multiphysics, numerical analysis, simulation and design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
736 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: Gas sensor, GSWR, micro-mechanical system, UWT, volatile emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
735 Screening of Process Variables for the Production of Extracellular Lipase from Palm Oil by Trichoderma Viride using Plackett-Burman Design

Authors: R. Rajendiran, S. Gayathri devi, B.T. SureshKumar, V. Arul Priya

Abstract:

Plackett-Burman statistical screening of media constituents and operational conditions for extracellular lipase production from isolate Trichoderma viride has been carried out in submerged fermentation. This statistical design is used in the early stages of experimentation to screen out unimportant factors from a large number of possible factors. This design involves screening of up to 'n-1' variables in just 'n' number of experiments. Regression coefficients and t-values were calculated by subjecting the experimental data to statistical analysis using Minitab version 15. The effects of nine process variables were studied in twelve experimental trials. Maximum lipase activity of 7.83 μmol /ml /min was obtained in the 6th trail. Pareto chart illustrates the order of significance of the variables affecting the lipase production. The present study concludes that the most significant variables affecting lipase production were found to be palm oil, yeast extract, K2HPO4, MgSO4 and CaCl2.

Keywords: lipase, submerged fermentation, statistical optimization, Trichoderma viride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320
734 Assessing Students’ Attitudinal Response towards the Use of Virtual Reality in a Mandatory English Class at a Women’s University in Japan

Authors: Felix David

Abstract:

The use of virtual reality (VR) technology is still in its infancy. This is especially true in a Japanese educational context with very little to no exposition of VR technology inside classrooms. Technology is growing and changing rapidly in America, but Japan seems to be lagging behind in integrating VR into its curriculum. The aim of this research was to expose 111 students from Hiroshima Jogakuin University (HJU) to seven classes that involved VR content and assess students’ attitudinal responses toward this new technology. The students are all female, and they are taking the “Kiso Eigo/基礎英語” or Foundation English course, which is mandatory for all first- and second-year students. Two surveys were given, one before the treatment and a second survey after the treatment, which in this case means the seven VR classes. These surveys first established that the technical environment could accommodate VR activities in terms of internet connection, VR headsets, and the quality of the smartphone’s screen. Based on the attitudinal responses gathered in this research, VR is perceived by students as “fun,” useful to “learn about the world,” as well as being useful to “learn about English.” This research validates VR as a worthy educational tool and it should therefore continue being an integral part of the mandatory English course curriculum at HJU.

Keywords: Virtual Reality, smartphone, English Learning, curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174
733 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
732 Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests

Authors: N. Türkmenoğlu Bayraktar, E. Kishalı

Abstract:

Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.

Keywords: Building envelope, IRT, refurbishment, non-destructive test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
731 The Most Secure Smartphone Operating System: A Survey

Authors: Sundus Ayyaz, Saad Rehman

Abstract:

In the recent years, a fundamental revolution in the Mobile Phone technology from just being able to provide voice and short message services to becoming the most essential part of our lives by connecting to network and various app stores for downloading software apps of almost every activity related to our life from finding location to banking from getting news updates to downloading HD videos and so on. This progress in Smart Phone industry has modernized and transformed our way of living into a trouble-free world. The smart phone has become our personal computers with the addition of significant features such as multi core processors, multi-tasking, large storage space, bluetooth, WiFi, including large screen and cameras. With this evolution, the rise in the security threats have also been amplified. In Literature, different threats related to smart phones have been highlighted and various precautions and solutions have been proposed to keep the smart phone safe which carries all the private data of a user. In this paper, a survey has been carried out to find out the most secure and the most unsecure smart phone operating system among the most popular smart phones in use today.

Keywords: Smart phone, operating system, security threats, Android, iOS, Balckberry, Windows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4180
730 Development of Online Islamic Medication Expert System (OIMES)

Authors: Hanita Daud, Noorhana Yahya, Low Tan Jung, Azizuddin Abd Aziz, Rabibah Ahmad Samawe

Abstract:

This paper presents an overview of the design and implementation of an online rule-based Expert Systems for Islamic medication. T his Online Islamic Medication Expert System (OIMES) focuses on physical illnesses only. Knowledge base of this Expert System contains exhaustively the types of illness together with their related cures or treatments/therapies, obtained exclusively from the Quran and Hadith. Extensive research and study are conducted to ensure that the Expert System is able to provide the most suitable treatment with reference to the relevant verses cited in Quran or Hadith. These verses come together with their related 'actions' (bodily actions/gestures or some acts) to be performed by the patient to treat a particular illness/sickness. These verses and the instructions for the 'actions' are to be displayed unambiguously on the computer screen. The online platform provides the advantage for patient getting treatment practically anytime and anywhere as long as the computer and Internet facility exist. Patient does not need to make appointment to see an expert for a therapy.

Keywords: Expert System, Quran and Hadith, Islamic Medication, Rule-Based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
729 Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder

Authors: Avinash Chandra, R. P. Chhabra

Abstract:

Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number. The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. Natural convection heat transfer from a heated horizontal semi-circular cylinder (flat surface upward) has been investigated for the following ranges of conditions; Grashof number, and Prandtl number, . The governing partial differential equations (continuity, Navier-Stokes and energy equations) have been solved numerically using a finite volume formulation. In addition, the role of the type of the thermal boundary condition imposed at cylinder surface, namely, constant wall temperature (CWT) and constant heat flux (CHF) are explored. The resulting flow and temperature fields are visualized in terms of the streamline and isotherm patterns in the proximity of the cylinder. The flow remains attached to the cylinder surface over the range of conditions spanned here except that for and ; at these conditions, a separated flow region is observed when the condition of the constant wall temperature is prescribed on the surface of the cylinder. The heat transfer characteristics are analyzed in terms of the local and average Nusselt numbers. The maximum value of the local Nusselt number always occurs at the corner points whereas it is found to be minimum at the rear stagnation point on the flat surface. Overall, the average Nusselt number increases with Grashof number and/ or Prandtl number in accordance with the scaling considerations. The numerical results are used to develop simple correlations as functions of Grashof and Prandtl number thereby enabling the interpolation of the present numerical results for the intermediate values of the Prandtl or Grashof numbers for both thermal boundary conditions.

Keywords: Constant heat flux, Constant surface temperature, Grashof number, natural convection, Prandtl number, Semi-circular cylinder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3415
728 Modeling of Fluid Flow in 2D Triangular, Sinusoidal, and Square Corrugated Channels

Authors: Abdulbasit G. A. Abdulsayid

Abstract:

The main focus of the work was concerned with hydrodynamic and thermal analysis of the plate heat exchanger channel with corrugation patterns suggested to be triangular, sinusoidal, and square corrugation. This study was to numerically model and validate the triangular corrugated channel with dimensions/parameters taken from open literature, and then model/analyze both sinusoidal, and square corrugated channel referred to the triangular model. Initially, 2D modeling with local extensive analysis for triangular corrugated channel was carried out. By that, all local pressure drop, wall shear stress, friction factor, static temperature, heat flux, Nusselt number, and surface heat coefficient, were analyzed to interpret the hydrodynamic and thermal phenomena occurred in the flow. Furthermore, in order to facilitate confidence in this model, a comparison between the values predicted, and experimental results taken from literature for almost the same case, was done. Moreover, a holistic numerical study for sinusoidal and square channels together with global comparisons with triangular corrugation under the same condition, were handled. Later, a comparison between electric, and fluid cooling through varying the boundary condition was achieved. The constant wall temperature and constant wall heat flux boundary conditions were employed, and the different resulted Nusselt numbers as a consequence were justified. The results obtained can be used to come up with an optimal design, a 'compromise' between heat transfer and pressure drop.

Keywords: Corrugated Channel, CFD, Heat Exchanger, Heat Enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176
727 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: Authentication, computer security, keylogger, privacy, information leakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
726 Flow Control around Bluff Bodies by Attached Permeable Plates

Authors: G. M. Ozkan, H. Akilli

Abstract:

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0o, 15o, 30o, 45o, 60o) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45oand 60o which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Keywords: Bluff body, flow control, permeable plate, PIV, VIV, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
725 Development of a Biomaterial from Naturally Occurring Chloroapatite Mineral for Biomedical Applications

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

Hydroxyapatite is a bioceramic which can be used for applications in orthopedics and dentistry due to its structural similarity with the mineral phase of mammalian bones and teeth. In this study, it was synthesized, chemically changing natural Eppawala chloroapatite mineral as a value-added product. Sol-gel approach and solid state sintering were used to synthesize products using diluted nitric acid, ethanol and calcium hydroxide under different conditions. Synthesized Eppawala hydroxyapatite powder was characterized using X-ray Fluorescence (XRF), X-ray Powder Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to find out its composition, crystallinity, presence of functional groups, bonding type, surface morphology, microstructural features, and thermal dependence and stability, respectively. The XRD results reflected the formation of a hexagonal crystal structure of hydroxyapatite. Elementary composition and microstructural features of products were discussed based on the XRF and SEM results of the synthesized hydroxyapatite powder. TGA and DSC results of synthesized products showed high thermal stability and good material stability in nature. Also, FTIR spectroscopy results confirmed the formation of hydroxyapatite from apatite via the presence of hydroxyl groups. Those results coincided with the FTIR results of mammalian bones including human bones. The study concludes that there is a possibility of producing hydroxyapatite using commercially available Eppawala chloroapatite in Sri Lanka.

Keywords: Dentistry, eppawala chloroapatite, hydroxyapatite, orthopedics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
724 Nonlinear Thermal Hydraulic Model to Analyze Parallel Channel Density Wave Instabilities in Natural Circulation Boiling Water Reactor with Asymmetric Power Distribution

Authors: Sachin Kumar, Vivek Tiwari, Goutam Dutta

Abstract:

The paper investigates parallel channel instabilities of natural circulation boiling water reactor. A thermal-hydraulic model is developed to simulate two-phase flow behavior in the natural circulation boiling water reactor (NCBWR) with the incorporation of ex-core components and recirculation loop such as steam separator, down-comer, lower-horizontal section and upper-horizontal section and then, numerical analysis is carried out for parallel channel instabilities of the reactor undergoing both in-phase and out-of-phase modes of oscillations. To analyze the relative effect on stability of the reactor due to inclusion of various ex-core components and recirculation loop, marginal stable point is obtained at a particular inlet enthalpy of the reactor core without the inclusion of ex-core components and recirculation loop and then with the inclusion of the same. Numerical simulations are also conducted to determine the relative dominance between two modes of oscillations i.e. in-phase and out-of-phase. Simulations are also carried out when the channels are subjected to asymmetric power distribution keeping the inlet enthalpy same.

Keywords: Asymmetric power distribution, Density wave oscillations, In-phase and out-of-phase modes of instabilities, Natural circulation boiling water reactor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
723 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network

Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain

Abstract:

This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.

Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
722 Multi-Modal Visualization of Working Instructions for Assembly Operations

Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger

Abstract:

Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.

Keywords: Assembly, assistive technologies, augmented reality, manufacturing, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
721 Coupling Heat and Mass Transfer for Hydrogen-Assisted Self-Ignition Behaviors of Propane-Air Mixtures in Catalytic Micro-Channels

Authors: Junjie Chen, Deguang Xu

Abstract:

Transient simulation of the hydrogen-assisted self-ignition of propane-air mixtures were carried out in platinum-coated micro-channels from ambient cold-start conditions, using a two-dimensional model with reduced-order reaction schemes, heat conduction in the solid walls, convection and surface radiation heat transfer. The self-ignition behavior of hydrogen-propane mixed fuel is analyzed and compared with the heated feed case. Simulations indicate that hydrogen can successfully cause self-ignition of propane-air mixtures in catalytic micro-channels with a 0.2 mm gap size, eliminating the need for startup devices. The minimum hydrogen composition for propane self-ignition is found to be in the range of 0.8-2.8% (on a molar basis), and increases with increasing wall thermal conductivity, and decreasing inlet velocity or propane composition. Higher propane-air ratio results in earlier ignition. The ignition characteristics of hydrogen-assisted propane qualitatively resemble the selectively inlet feed preheating mode. Transient response of the mixed hydrogen- propane fuel reveals sequential ignition of propane followed by hydrogen. Front-end propane ignition is observed in all cases. Low wall thermal conductivities cause earlier ignition of the mixed hydrogen-propane fuel, subsequently resulting in low exit temperatures. The transient-state behavior of this micro-scale system is described, and the startup time and minimization of hydrogen usage are discussed.

Keywords: Micro-combustion, Self-ignition, Hydrogen addition, Heat transfer, Catalytic combustion, Transient simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885