Search results for: one and two- dimensional Schrodinger equation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2079

Search results for: one and two- dimensional Schrodinger equation.

1419 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension

Authors: Li Zong-Cheng

Abstract:

It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.

Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
1418 Capability Prediction of Machining Processes Based on Uncertainty Analysis

Authors: Hamed Afrasiab, Saeed Khodaygan

Abstract:

Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.

Keywords: Process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
1417 Multi-Rate Exact Discretization based on Diagonalization of a Linear System - A Multiple-Real-Eigenvalue Case

Authors: T. Sakamoto, N. Hori

Abstract:

A multi-rate discrete-time model, whose response agrees exactly with that of a continuous-time original at all sampling instants for any sampling periods, is developed for a linear system, which is assumed to have multiple real eigenvalues. The sampling rates can be chosen arbitrarily and individually, so that their ratios can even be irrational. The state space model is obtained as a combination of a linear diagonal state equation and a nonlinear output equation. Unlike the usual lifted model, the order of the proposed model is the same as the number of sampling rates, which is less than or equal to the order of the original continuous-time system. The method is based on a nonlinear variable transformation, which can be considered as a generalization of linear similarity transformation, which cannot be applied to systems with multiple eigenvalues in general. An example and its simulation result show that the proposed multi-rate model gives exact responses at all sampling instants.

Keywords: Multi-rate discretization, linear systems, triangularization, similarity transformation, diagonalization, exponential transformation, multiple eigenvalues

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
1416 Phase Behaviors and Fuel Properties of Bio-Oil-Diesel-Alcohol Blends

Authors: P. Weerachanchai, C. Tangsathitkulchai, M. Tangsathitkulchai

Abstract:

Attempt was made to improve certain characteristics of bio-oil derived from palm kernel pyrolysis by blending it with diesel fuel and alcohols. Two types of alcohol, ethanol or butanol, was used as cosolvent to stabilize the phase of ternary systems. Phase behaviors and basic fuel properties of palm kernel bio-oildiesel- alcohol systems were investigated in this study. Alcohol types showed a significant influence on the phase characteristics with palm kernel bio-oil-diesel-butanol system giving larger soluble area than that of palm kernel bio-oil-diesel-ethanol system. For fuel properties, blended fuels showed superior properties including lower values of density (~860 kg/m3 at 25°C), viscosity (~4.12 mm2/s at 40°C), carbon residue (1.02-2.53 wt%), ash (0.018-0.034 wt%) and pour point (<-25 to -7 °C), increased pH (~ 6.4) and giving reasonable heating values of 32.5-41.2 MJ/kg. To enable the prediction of some properties of fuel mixtures, the measured fuel properties including heating value, density, ash content and pH were fitted by Kay-s mixing rule, whereas the viscosities of blended fuels at different temperatures were correlated by the modified Grunberg-Nissan equation and Andrade equation.

Keywords: Bio-oil, fuel blend, fuel properties, phase behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3809
1415 Study of Natural Convection in a Triangular Cavity Filled with Water: Application of the Lattice Boltzmann Method

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

The Lattice Boltzmann Method (LBM) with double populations is applied to solve the steady-state laminar natural convective heat transfer in a triangular cavity filled with water. The bottom wall is heated, the vertical wall is cooled, and the inclined wall is kept adiabatic. The buoyancy effect was modeled by applying the Boussinesq approximation to the momentum equation. The fluid velocity is determined by D2Q9 LBM and the energy equation is discritized by D2Q4 LBM to compute the temperature field. Comparisons with previously published work are performed and found to be in excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number from  to  and the inclination angle from 0° to 360°. Flow and thermal fields were exhibited by means of streamlines and isotherms. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.

 

Keywords: Heat transfer, inclination angle, Lattice Boltzmann Method, Nusselt number, Natural convection, Rayleigh number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2729
1414 Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions

Authors: Ilke Senol

Abstract:

Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.

Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6947
1413 Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule

Authors: M. A. Sedghamiz, S. Raeissi

Abstract:

This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the UNIQUAC GE model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96-6.22%. The PR-WS-UNIQUAC method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The PR-WS-NRTL method led to the least errors, where average absolute deviations ranged between 0.65-1.7%.

Keywords: Bubble pressure, Gibbs excess energy model, mixing rule, CO2 solubility, ethyl palmitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
1412 E-Government Continuance Intention of Media Psychology: Some Insights from Psychographic Characteristics

Authors: Azlina Binti Abu Bakar, Fahmi Zaidi Bin Abdul Razak, Wan Salihin Wong Abdullah

Abstract:

Psychographic is a psychological study of values, attitudes, interests and it is used mostly in prediction, opinion research and social research. This study predicts the influence of performance expectancy, effort expectancy, social influence and facilitating condition on e-government acceptance among Malaysian citizens. The survey responses of 543 e-government users have been validated and analyzed by means of covariance-based Structural Equation Modeling. The findings indicate that e-government acceptance among Malaysian citizens are mainly influenced by performance expectancy (β = 0.66, t = 11.53, p < 0.01) and social influence (β = 0.20, t = 4.23, p < 0.01). Surprisingly, there is no significant effect of facilitating condition and effort expectancy on e-government continuance intention (β = 0.01, t = 0.27, p > 0.05; β = -0.01, t = -0.40, p > 0.05). This study offers government and vendors a frame of reference to analyze citizen’s situation before initiating new innovations. In case of Malaysian e-government technology, adoption strategies should be built around fostering level of citizens’ technological expectation and social influence on e-government usage.

Keywords: Continuance intention, Malaysian citizens, media psychology, structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
1411 Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

Authors: Jing-ran Lin, Qi-cong Peng, Huai-zong Shao

Abstract:

The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.

Keywords: Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performanceoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
1410 Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Authors: Meftah O. Bashir, Fatma A. Karkory

Abstract:

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimise the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Keywords: Rapid prototyping, wax, manufacturing processes, additive prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1409 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
1408 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls

Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah

Abstract:

In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.

Keywords: Boundary layer profile, fire whirls, near-ground height, vortex interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
1407 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Content-based, indexing, cluster, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
1406 The Relationship between Fugacity and Stress Intensity Factor for Corrosive Environment in Presence of Hydrogen Embrittlement

Authors: A. R. Shahani, E. Mahdavi, M. Amidpour

Abstract:

Hydrogen diffusion is the main problem for corrosion fatigue in corrosive environment. In order to analyze the phenomenon, it is needed to understand their behaviors specially the hydrogen behavior during the diffusion. So, Hydrogen embrittlement and prediction its behavior as a main corrosive part of the fractions, needed to solve combinations of different equations mathematically. The main point to obtain the equation, having knowledge about the source of causing diffusion and running the atoms into materials, called driving force. This is produced by either gradient of electrical or chemical potential. In this work, we consider the gradient of chemical potential to obtain the property equation. In diffusion of atoms, some of them may be trapped but, it could be ignorable in some conditions. According to the phenomenon of hydrogen embrittlement, the thermodynamic and chemical properties of hydrogen are considered to justify and relate them to fracture mechanics. It is very important to get a stress intensity factor by using fugacity as a property of hydrogen or other gases. Although, the diffusive behavior and embrittlement event are common and the same for other gases but, for making it more clear, we describe it for hydrogen. This considering on the definite gas and describing it helps us to understand better the importance of this relation.

Keywords: Hydrogen embrittlement, Fracture mechanics, Thermodynamic, Stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1405 Glorification Trap in Combating Human Trafficking in Indonesia: An Application of Three-Dimensional Model of Anti-Trafficking Policy

Authors: M. Kosandi, V. Susanti, N. I. Subono, E. Kartini

Abstract:

This paper discusses the risk of glorification trap in combating human trafficking, as it is shown in the case of Indonesia. Based on a research on Indonesian combat against trafficking in 2017-2018, this paper shows the tendency of misinterpretation and misapplication of the Indonesian anti-trafficking law into misusing the law for glorification, to create an image of certain extent of achievement in combating human trafficking. The objective of this paper is to explain the persistent occurrence of human trafficking crimes despite the significant progress of anti-trafficking efforts of Indonesian government. The research was conducted in 2017-2018 by qualitative approach through observation, depth interviews, discourse analysis, and document study, applying the three-dimensional model for analyzing human trafficking in the source country. This paper argues that the drive for glorification of achievement in the combat against trafficking has trapped Indonesian government in the loop of misinterpretation, misapplication, and misuse of the anti-trafficking law. In return, the so-called crime against humanity remains high and tends to increase in Indonesia.

Keywords: Human trafficking, anti-trafficking policy, transnational crime, source country, glorification trap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
1404 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: Equivalent Martingale Measure, European Put Option, Girsanov Theorem, Martingales, Monte Carlo method, option price valuation, option price valuation formula.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
1403 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces

Authors: S. Matour, M. Mahdavinejad, R. Fayaz

Abstract:

Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.

Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
1402 Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques

Authors: M. Abdul-Rani, K. K. Chong, A. F. M. Hani, Y. B. Yap, A. Jamil

Abstract:

Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.

Keywords: Imaging, Laser Triangulation, Structured Light, Volume Determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
1401 Design of One – Dimensional Tungsten Gratings for Thermophotovoltaic Emitters

Authors: Samah. G. Babiker, Shuai Yong, Mohamed Osman Sid-Ahmed Xie Ming, A.M. Abdelbagi

Abstract:

In this paper, a one - dimensional microstructure tungsten grating (pyramids) is optimized for potential application as thermophotovoltaic (TPV) emitter. The influence of gratings geometric parameters on the spectral emittance are studied by using the rigorous coupled-wave analysis (RCWA).The results show that the spectral emittance is affected by the gratings geometrical parameters. The optimum parameters are grating period of 0.5µm, a filling ratio of 0.8 and grating height of h=0.2µm. A broad peak of high emittance is obtained at wavelengths between 0.5 and 1.8µm. The emittance drops below 0.2 at wavelengths above 1.8µm. This can be explained by the surface plasmon polaritons excitation coupled with the grating microstructures. At longer wavelengths, the emittance remains low and this is highly desired for thermophotovoltaic applications to reduce the thermal leakage due to low-energy photons that do not produce any photocurrent. The proposed structure can be used as a selective emitter for a narrow band gap cell such as GaSb. The performance of this simple 1-D emitter proved to be superior to that from more complicated structures. Almost all the radiation from the emitter incident, at angles up to 40°, on the cell, could be utilized to produce a photocurrent. There is no need for a filter.

Keywords: Thermophotovoltaic, RCWA, Grating, Emittance, Surface plasmon polaritons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
1400 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique

Authors: Hassen M. Ouakad

Abstract:

In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.

Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
1399 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization

Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao

Abstract:

Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.

Keywords: Minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
1398 Application of Computational Intelligence Techniques for Economic Load Dispatch

Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil

Abstract:

This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.

Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1397 Compliance Modelling and Optimization of Kerf during WEDM of Al7075/SiCP Metal Matrix Composite

Authors: Thella Babu Rao, A. Gopala Krishna

Abstract:

This investigation presents the formulation of kerf (width of slit) and optimal control parameter settings of wire electrochemical discharge machining which results minimum possible kerf while machining Al7075/SiCp MMCs. WEDM is proved its efficiency and effectiveness to cut the hard ceramic reinforced MMCs within the permissible budget. Among the distinct performance measures of WEDM process, kerf is an important performance characteristic which determines the dimensional accuracy of the machined component while producing high precision components. The lack of available of the machinability information such advanced MMCs result the more experimentation in the manufacturing industries. Therefore, extensive experimental investigations are essential to provide the database of effect of various control parameters on the kerf while machining such advanced MMCs in WEDM. Literature reviled the significance some of the electrical parameters which are prominent on kerf for machining distinct conventional materials. However, the significance of reinforced particulate size and volume fraction on kerf is highlighted in this work while machining MMCs along with the machining parameters of pulse-on time, pulse-off time and wire tension. Usually, the dimensional tolerances of machined components are decided at the design stage and a machinist pay attention to produce the required dimensional tolerances by setting appropriate machining control variables. However, it is highly difficult to determine the optimal machining settings for such advanced materials on the shop floor. Therefore, in the view of precision of cut, kerf (cutting width) is considered as the measure of performance for the model. It was found from the literature that, the machining conditions of higher fractions of large size SiCp resulting less kerf where as high values of pulse-on time result in a high kerf. A response surface model is used to predict the relative significance of various control variables on kerf. Consequently, a powerful artificial intelligence called genetic algorithms (GA) is used to determine the best combination of the control variable settings. In the next step the conformation test was conducted for the optimal parameter settings and found good agreement between the GA kerf and measured kerf. Hence, it is clearly reveal that the effectiveness and accuracy of the developed model and program to analyze the kerf and to determine its optimal process parameters. The results obtained in this work states that, the resulted optimized parameters are capable of machining the Al7075/SiCp MMCs more efficiently and with better dimensional accuracy.

Keywords: Al7075SiCP MMC, kerf, WEDM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
1396 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
1395 Optimal Portfolio Selection in a DC Pension with Multiple Contributors and the Impact of Stochastic Additional Voluntary Contribution on the Optimal Investment Strategy

Authors: Edikan E. Akpanibah, Okwigbedi Oghen’Oro

Abstract:

In this paper, we studied the optimal portfolio selection in a defined contribution (DC) pension scheme with multiple contributors under constant elasticity of variance (CEV) model and the impact of stochastic additional voluntary contribution on the investment strategies. We assume that the voluntary contributions are stochastic and also consider investments in a risk free asset and a risky asset to increase the expected returns of the contributing members. We derived a stochastic differential equation which consists of the members’ monthly contributions and the invested fund and obtained an optimized problem with the help of Hamilton Jacobi Bellman equation. Furthermore, we find an explicit solution for the optimal investment strategy with stochastic voluntary contribution using power transformation and change of variables method and the corresponding optimal fund size was obtained. We discussed the impact of the voluntary contribution on the optimal investment strategy with numerical simulations and observed that the voluntary contribution reduces the optimal investment strategy of the risky asset.

Keywords: DC pension fund, Hamilton-Jacobi-Bellman, optimal investment strategies, power transformation method, stochastic, voluntary contribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
1394 On the Exact Solution of Non-Uniform Torsion for Beams with Asymmetric Cross-Section

Authors: A.Campanile, M. Mandarino, V. Piscopo

Abstract:

This paper deals with the problem of non-uniform torsion in thin-walled elastic beams with asymmetric cross-section, removing the basic concept of a fixed center of twist, necessary in the Vlasov-s and Benscoter-s theories to obtain a warping stress field equivalent to zero. In this new torsion/flexure theory, despite of the classical ones, the warping function will punctually satisfy the first indefinite equilibrium equation along the beam axis and it wont- be necessary to introduce the classical congruence condition, to take into account the effect of the beam restraints. The solution, based on the Fourier development of the displacement field, is obtained assuming that the applied external torque is constant along the beam axis and on both beam ends the unit twist angle and the warping axial displacement functions are totally restrained. Finally, in order to verify the feasibility of the proposed method and to compare it with the classical theories, two applications are carried out. The first one, relative to an open profile, is necessary to test the numerical method adopted to find the solution; the second one, instead, is relative to a simplified containership section, considered as full restrained in correspondence of two adjacent transverse bulkheads.

Keywords: Non-uniform torsion, Asymmetric cross-section, Fourier series, Helmholtz equation, FE method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
1393 Free Flapping Vibration of Rotating Inclined Euler Beams

Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao

Abstract:

A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.

Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1392 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: Accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
1391 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
1390 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL, electrokinetic, electroosmotic, microfluidics, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181