Search results for: machine health monitoring.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3139

Search results for: machine health monitoring.

2479 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
2478 Optical Road Monitoring of the Future Smart Roads – Preliminary Results

Authors: Maria Jokela, Matti Kutila, Jukka Laitinen, Florian Ahlers, Nicolas Hautière, TobiasSchendzielorz

Abstract:

It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.

Keywords: Smart roads, traffic monitoring, traffic scenedetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
2477 Fault Detection of Broken Rotor Bars Using Stator Current Spectrum for the Direct Torque Control Induction Motor

Authors: Ridha Kechida, Arezki Menacer, Abdelhamid Benakcha

Abstract:

The numerous qualities of squirrel cage induction machines enhance their use in industry. However, various faults can occur, such as stator short-circuits and rotor failures. In this paper, we use a technique based on the spectral analysis of stator current in order to detect the fault in the machine: broken rotor bars. Thus, the number effect of the breaks has been highlighted. The effect is highlighted by considering the machine controlled by the Direct Torque Control (DTC). The key to fault detection is the development of a simplified dynamic model of a squirrel cage induction motor taking account the broken bars fault and the stator current spectrum analysis (FFT).

Keywords: Rotor faults, diagnosis, induction motor, DTC, statorcurrent spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3122
2476 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models

Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz

Abstract:

Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.

Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
2475 Effects of Variations in Generator Inputs for Small Signal Stability Studies of a Three Machine Nine Bus Network

Authors: Hemalan Nambier a/l Vijiyan, Agileswari K. Ramasamy, Au Mau Teng, Syed Khaleel Ahmed

Abstract:

Small signal stability causes small perturbations in the generator that can cause instability in the power network. It is generally known that small signal stability are directly related to the generator and load properties. This paper examines the effects of generator input variations on power system oscillations for a small signal stability study. Eigenvaules and eigenvectors are used to examine the stability of the power system. The dynamic power system's mathematical model is constructed and thus calculated using load flow and small signal stability toolbox on MATLAB. The power system model is based on a 3-machine 9-bus system that was modified to suit this study. In this paper, Participation Factors are a means to gauge the effects of variation in generation with other parameters on the network are also incorporated.

Keywords: Eigen-analysis, generation modeling, participationfactor, small signal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
2474 Future Logistics - Challenges, Requirements and Solutions for Logistics Networks

Authors: Martin Roth, Axel Klarmann, Bogdan Franczyk

Abstract:

The importance of logistics has changed enormously in the last few decades. While logistics was formerly one of the core functions of most companies, logistics or at least parts of their functions are nowadays outsourced to external logistic service providers in terms of contracts. As a result of this shift new business models like the fourth party logistics provider emerged, which designs, plans and monitors the resulting logistics networks. This new business model and topics such as Synchromodality or Big Data impose new requirements on the underlying IT, which cannot be met with conventional concepts and approaches. In this paper, the challenges of logistics network monitoring are outlined by using a scenario. The most common layers in a logical multilayered architecture for an information system are used to point out the arising challenges for IT. In addition, first appropriate solution approaches are introduced.

 

Keywords: Complex Event Processing, Fourth Party Logistics Service Provider, Logistics monitoring, Synchromodality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3376
2473 The Design of the Multi-Agent Classification System (MACS)

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the design of a .NET Windows Service based agent system called MACS (Multi-Agent Classification System). MACS is a system aims to accurately classify spreadsheet developers competency over a network. It is designed to automatically and autonomously monitor spreadsheet users and gather their development activities based on the utilization of the software multi-agent technology (MAS). This is accomplished in such a way that makes management capable to efficiently allow for precise tailor training activities for future spreadsheet development. The monitoring agents of MACS are intended to be distributed over the WWW in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus methodology is used for the design of the agents of MACS. Prometheus has been used to undertake this phase of the system design because it is developed specifically for specifying and designing agent-oriented systems. Additionally, Prometheus specifies also the communication needed between the agents in order to coordinate to achieve their delegated tasks.

Keywords: Classification, Design, MACS, MAS, Prometheus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
2472 Development of a GPS Buoy for Ocean Surface Monitoring: Initial Results

Authors: Anuar Mohd Salleh, Mohd Effendi Daud

Abstract:

This study presents a kinematic positioning approach that uses a global positioning system (GPS) buoy for precise ocean surface monitoring. The GPS buoy data from the two experiments are processed using an accurate, medium-range differential kinematic technique. In each case, the data from a nearby coastal site are collected at a high rate (1 Hz) for more than 24 hours, and measurements are conducted in neighboring tidal stations to verify the estimated sea surface heights. The GPS buoy kinematic coordinates are estimated using epoch-wise pre-elimination and a backward substitution algorithm. Test results show that centimeterlevel accuracy can be successfully achieved in determining sea surface height using the proposed technique. The centimeter-level agreement between the two methods also suggests the possibility of using this inexpensive and more flexible GPS buoy equipment to enhance (or even replace) current tidal gauge stations.

Keywords: Global positioning system, kinematic GPS, sea surface height, GPS buoy, tide gauge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
2471 An Approach of the Inverter Voltage Used for the Linear Machine with Multi Air-Gap Structure

Authors: Pierre Kenfack

Abstract:

In this paper we present a contribution for the modelling and control of the inverter voltage of a permanent magnet linear generator with multi air-gap structure. The time domain control method is based on instant comparison of reference signals, in the form of current or voltage, with actual or measured signals. The reference current or voltage must be kept close to the actual signal with a reasonable tolerance. In this work, the time domain control method is used to control tracking signals. The performance evaluation concerns the continuation of reference signal. Simulations validate very well the tracking of reference variables (current, voltage) by measured or actual signals. All is simulated and presented under PSIM Software to show the performance and robustness of the proposed controller.

Keywords: Control, permanent magnet, linear machine, multi air-gap structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
2470 Learning User Keystroke Patterns for Authentication

Authors: Ying Zhao

Abstract:

Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.

Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
2469 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region

Authors: T. Penkova, A. Korobko, V. Nicheporchuk., L. Nozhenkova, A. Metus

Abstract:

This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.

Keywords: Decision making support systems, Emergency risk assessment, Natural and anthropogenic safety, On-line control, Territory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
2468 A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function

Authors: Bita Tadayon, Nasser Salmasi

Abstract:

This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.

Keywords: flexible flowshop scheduling, group processing, machine eligibility constraint, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
2467 Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval

Authors: Hager Kammoun, Jean Charles Lamirel, Mohamed Ben Ahmed

Abstract:

In this paper, a model for an information retrieval system is proposed which takes into account that knowledge about documents and information need of users are dynamic. Two methods are combined, one qualitative or symbolic and the other quantitative or numeric, which are deemed suitable for many clustering contexts, data analysis, concept exploring and knowledge discovery. These two methods may be classified as inductive learning techniques. In this model, they are introduced to build “long term" knowledge about past queries and concepts in a collection of documents. The “long term" knowledge can guide and assist the user to formulate an initial query and can be exploited in the process of retrieving relevant information. The different kinds of knowledge are organized in different points of view. This may be considered an enrichment of the exploration level which is coherent with the concept of document/query structure.

Keywords: Information Retrieval Systems, machine learning, classification, Galois lattices, Self Organizing Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
2466 Forecasting Fraudulent Financial Statements using Data Mining

Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas

Abstract:

This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.

Keywords: Machine learning, stacking, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
2465 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: Neural network, conformal prediction, cancer classification, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
2464 Personal Health Assistance Service Expert System (PHASES)

Authors: Chakkrit Snae, Michael Brueckner

Abstract:

In this paper the authors present the framework of a system for assisting users through counseling on personal health, the Personal Health Assistance Service Expert System (PHASES). Personal health assistance systems need Personal Health Records (PHR), which support wellness activities, improve the understanding of personal health issues, enable access to data from providers of health services, strengthen health promotion, and in the end improve the health of the population. This is especially important in societies where the health costs increase at a higher rate than the overall economy. The most important elements of a healthy lifestyle are related to food (such as balanced nutrition and diets), activities for body fitness (such as walking, sports, fitness programs), and other medical treatments (such as massage, prescriptions of drugs). The PHASES framework uses an ontology of food, which includes nutritional facts, an expert system keeping track of personal health data that are matched with medical treatments, and a comprehensive data transfer between patients and the system.

Keywords: Personal health assistance service, expert system, ontologies, knowledge management, information technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
2463 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
2462 Screening of Congenital Heart Diseases with Fetal Phonocardiography

Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney

Abstract:

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Keywords: Cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
2461 Optimal Based Damping Controllers of Unified Power Flow Controller Using Adaptive Tabu Search

Authors: Rungnapa Taithai, Anant Oonsivilai

Abstract:

This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.

Keywords: Adaptive Tabu Search (ATS), damping controller, Single Machine Infinite Bus (SMIB), Unified Power Flow Controller (UPFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
2460 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine

Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels

Abstract:

This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.

Keywords: Axial flux permanent magnet, CFD, magnet parameters, stator heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
2459 Object Speed Estimation by using Fuzzy Set

Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi

Abstract:

Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.

Keywords: Blur Analysis, Fuzzy sets, Speed estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
2458 Modeling Biology Inspired Reactive Agents Using X-machines

Authors: George Eleftherakis, Petros Kefalas, Anna Sotiriadou, Evangelos Kehris

Abstract:

Recent advances in both the testing and verification of software based on formal specifications of the system to be built have reached a point where the ideas can be applied in a powerful way in the design of agent-based systems. The software engineering research has highlighted a number of important issues: the importance of the type of modeling technique used; the careful design of the model to enable powerful testing techniques to be used; the automated verification of the behavioural properties of the system; the need to provide a mechanism for translating the formal models into executable software in a simple and transparent way. This paper introduces the use of the X-machine formalism as a tool for modeling biology inspired agents proposing the use of the techniques built around X-machine models for the construction of effective, and reliable agent-based software systems.

Keywords: Biology inspired agent, formal methods, x-machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2457 Classification of Extreme Ground-Level Ozone Based on Generalized Extreme Value Model for Air Monitoring Station

Authors: Siti Aisyah Zakaria, Nor Azrita Mohd Amin, Noor Fadhilah Ahmad Radi, Nasrul Hamidin

Abstract:

Higher ground-level ozone (GLO) concentration adversely affects human health, vegetations as well as activities in the ecosystem. In Malaysia, most of the analysis on GLO concentration are carried out using the average value of GLO concentration, which refers to the centre of distribution to make a prediction or estimation. However, analysis which focuses on the higher value or extreme value in GLO concentration is rarely explored. Hence, the objective of this study is to classify the tail behaviour of GLO using generalized extreme value (GEV) distribution estimation the return level using the corresponding modelling (Gumbel, Weibull, and Frechet) of GEV distribution. The results show that Weibull distribution which is also known as short tail distribution and considered as having less extreme behaviour is the best-fitted distribution for four selected air monitoring stations in Peninsular Malaysia, namely Larkin, Pelabuhan Kelang, Shah Alam, and Tanjung Malim; while Gumbel distribution which is considered as a medium tail distribution is the best-fitted distribution for Nilai station. The return level of GLO concentration in Shah Alam station is comparatively higher than other stations. Overall, return levels increase with increasing return periods but the increment depends on the type of the tail of GEV distribution’s tail. We conduct this study by using maximum likelihood estimation (MLE) method to estimate the parameters at four selected stations in Peninsular Malaysia. Next, the validation for the fitted block maxima series to GEV distribution is performed using probability plot, quantile plot and likelihood ratio test. Profile likelihood confidence interval is tested to verify the type of GEV distribution. These results are important as a guide for early notification on future extreme ozone events.

Keywords: Extreme value theory, generalized extreme value distribution, ground-level ozone, return level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
2456 Vibration Analysis of an Alstom Typhoon Gas Turbine Power Plant Related to Iran Oil Industry

Authors: Omid A. Zargar

Abstract:

Vibration analysis is the most important factor in preventive maintenance. Gas turbine vibration analysis is also one of the most challenging categories in most critical equipment monitoring systems. Utilities are heart of the process in big industrial plants like petrochemical zones. Vibration analysis methods and condition monitoring systems of this kind of equipment developed too much in recent years. On the other hand, too much operation condition consideration in this kind of equipment should be adjusted properly like inlet and outlet pressure and temperature for both turbine and compressor. In this paper the most important tools and hypothesis used for analyzing of gas turbine power plants discussed in details through a real case history related to an Alstom Typhoon gas turbine power plant in Iran oil industries. In addition, the basic principal of vibration behavior caused by mechanical unbalance in gas turbine rotor discussed in details.

Keywords: Vibration analysis, gas turbine, time wave form (TWF), fast Fourier transform (FFT), phase angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4911
2455 Controllable Electrical Power Plug Adapters Made As A ZigBee Wireless Sensor Network

Authors: Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara

Abstract:

Using Internet communication, new home electronics have functions of monitoring and control from remote. However in many case these electronics work as standalone, and old electronics are not followed. Then, we developed the total remote system include not only new electronics but olds. This systems node is a adapter of electrical power plug that embed relay switch and some sensors, and these nodes communicate with each other. the system server was build on the Internet, and users access to this system from web browsers. To reduce the cost to set up of this system, communication between adapters are used ZigBee wireless network instead of wired LAN cable[3]. From measured RSSI(received signal strength indicator) information between each nodes, the system can estimate roughly adapters were mounted on which room, and where in the room. So also it reduces the cost of mapping nodes. Using this system, energy saving and house monitoring are expected.

Keywords: outlet, remote monitor, remote control, mobile ad hocnetwork, sensor network, zigbee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
2454 Comparative Study Using Weka for Red Blood Cells Classification

Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
2453 A Software of Intrusion Detection Mechanism for Virtual Platforms

Authors: Ying-Chuan Chen, Shuen-Tai Wang

Abstract:

Security is an interesting and significance issue for popular virtual platforms, such as virtualization cluster and cloud platforms. Virtualization is the powerful technology for cloud computing services, there are a lot of benefits by using virtual machine tools which be called hypervisors, such as it can quickly deploy all kinds of virtual Operating Systems in single platform, able to control all virtual system resources effectively, cost down for system platform deployment, ability of customization, high elasticity and high reliability. However, some important security problems need to take care and resolved in virtual platforms that include terrible viruses, evil programs, illegal operations and intrusion behavior. In this paper, we present useful Intrusion Detection Mechanism (IDM) software that not only can auto to analyze all system-s operations with the accounting journal database, but also is able to monitor the system-s state for virtual platforms.

Keywords: security, cluster, cloud, virtualization, virtual machine, virus, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2452 Some Design Issues in Designing of 50KW 50Krpm Permanent Magnet Synchronous Machine

Authors: Ali A. Mehna, Mohmed A. Ali, Ali S. Zayed

Abstract:

A numbers of important developments have led to an increasing attractiveness for very high speed electrical machines (either motor or generator). Specifically the increasing switching speed of power electronics, high energy magnets, high strength retaining materials, better high speed bearings and improvements in design analysis are the primary drivers in a move to higher speed. The design challenges come in the mechanical design both in terms of strength and resonant modes and in the electromagnetic design particularly in respect of iron losses and ac losses in the various conducting parts including the rotor. This paper describes detailed design work which has been done on a 50,000 rpm, 50kW permanent magnet( PM) synchronous machine. It describes work on electromagnetic and rotor eddy current losses using a variety of methods including both 2D finite element analysis

Keywords: High speed, PM motor, rotor and stator losses, finiteelement analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
2451 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: Machine learning, Imbalanced data, Data mining, Big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
2450 Hybrid Machine Learning Approach for Text Categorization

Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite

Abstract:

Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.

Keywords: Text categorization, decision trees, neural networks, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806