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Abstract—With the expansion of machine learning and data
mining in the context of Big Data analytics, the common
problem that affects data is class imbalance. It refers to an
imbalanced distribution of instances belonging to each class. This
problem is present in many real world applications such as fraud
detection, network intrusion detection, medical diagnostics, etc.
In these cases, data instances labeled negatively are significantly
more numerous than the instances labeled positively. When this
difference is too large, the learning system may face difficulty
when tackling this problem, since it is initially designed to
work in relatively balanced class distribution scenarios. Another
important problem, which usually accompanies these imbalanced
data, is the overlapping instances between the two classes. It is
commonly referred to as noise or overlapping data. In this article,
we propose an approach called: One Side Behavioral Noise
Reduction (OSBNR). This approach presents a way to deal with
the problem of class imbalance in the presence of a high noise
level. OSBNR is based on two steps. Firstly, a cluster analysis is
applied to groups similar instances from the minority class into
several behavior clusters. Secondly, we select and eliminate the
instances of the majority class, considered as behavioral noise,
which overlap with behavior clusters of the minority class. The
results of experiments carried out on a representative public
dataset confirm that the proposed approach is efficient for the
treatment of class imbalances in the presence of noise.

Keywords—Machine learning, Imbalanced data, Data mining,
Big data.

I. INTRODUCTION

THE problems that belong to the class of anomaly detection 
such as fraud detection, network intrusion detection and

medical diagnostics, share a common observation: the captured

data is imbalanced. In other words, one of the classes,

called minority or postive class, is strongly under-represented

compared to the other class, called majority or negative

class [1], [2]. The problem with imbalanced data sets is that

standard classification learning algorithms assume a relatively

uniform distribution of classes. They are often biased towards

the majority class and, therefore, there is a higher rate of

classification errors for minority class instances [3].
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Unfortunately, the minority class is generally the most

important from data analysis point of view. Thus, such a

poor classification of minority instances often has serious

consequences in real applications. For example, in credit card

fraud detection systems, undetected fraudulent transactions are

much more serious and costly than detecting normal behavior

as fraud. Finding a good solution for imbalanced data with

good accuracy has become an important area of research,

known as learning from imbalanced data [2], [4], [5].

An important problem, which usually accompanies the

imbalanced data classification, is the presence of noise. It

is commonly referred to as overlapping data and we named

it behavioral noise. The behavioral noise problem occurs

when the data instances belonging to a class overlap the

data instances of another class. Therefore, the boundaries of

the classes may not be clearly defined. This problem plays

an important role in the study of imbalanced data. Most

classification learning algorithms could lead to classifying

minority class instances into majority ones. Thus, classification

performance depends on these two main problems: class

imbalance and behavioral noise [6].

In this work, we are interested of credit card fraud detection

problem. This is a good example of a very imbalanced and

overlapping data classification problem [3]. We present a

new approach called: One Side Behavioral Noise Reduction

(OSBNR) to deal with class imbalance problem, with a

particular emphasis on the presence of noise. OSBNR mainly

contains two steps. First, a cluster analysis is applied to groups

similar instances of the minority class in multiple behavior

clusters. Second, we select and eliminate instances of the

majority class, considered as behavioral noise, which overlap

the behavioral clusters of the minority class.

This article is organized as follows: In Section II, common 
approaches to address the data imbalance are presented. 
Section III presents in detail our proposed approach to improve 
the classification of imbalanced data. While Section IV reports 
the experiments and shows the results obtained. The final 
section concludes the paper and provides our insights into 
future works.

II. COMMON APPROACHES FOR ADDRESSING DATA

IMBALANCE

Different approaches have been proposed to deal with

imbalanced data problem and improve the performance of

prediction [7]-[8]. Often, these approaches are based on
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either the data level or the algorithm level. Data-level based 
approaches are independent of the classifier a nd transform 
the input data distribution to change the balance between 
classes, for example, using resampling techniques [9], [10]. 
Algorithmic-level based approaches modify learning or 
classification strategies in order to pay more attention to the 
minority class [11], [12].

A. Data-Level Based Approaches

These approaches use sampling methods to produce a

well balanced dataset from the imbalanced training dataset.

With regard to sampling, we can distinguish two methods:

undersampling and oversampling.

1) Undersampling Methods for Data-Level Based
Approaches: Eliminate certain majority class instances

to achieve a balanced distribution of all classes. However,

this can lead to the suppression of informative instances of

the majority class, especially if the number of instances of

the minority class is very small. Thus, there will be a huge

loss of information from majority class instances, leading to

a non-optimal classification.

A popular algorithm for undersampling, Condensed Nearest

Neighbour Rule (CNN) was proposed in the paper [13].

CNN works by eliminating the majority class samples that

are distant from the decision border since these samples can

be considered as less relevant for learning. Another popular

algorithm for undersampling, Tomek’s Link removal (TL) was

introduced in [14], This algorithm works by detecting pair of

data points, called Tomek’s Link, that are each other’s nearest

neighbor but have different class labels. Undersampling can

be done by either removing all Tomek links or by removing

the majority class data belonging to the Tomek link. Edited

Nearest Neighbor Rule (ENN) was presented in [15]. It

removes any instance whose class label is different from

the class of, at least, two of its three nearest neighbors.

The idea behind this technique is to remove the instances

from the majority class near or around the borderline of

different classes, in order to increase classification accuracy

of minority instances rather than majority instances. Another

undersampling technique called Neighbourhood Cleaning Rule

(NCR) was proposed by [16]. It uses Wilson’s Edited Nearest

Neighbour Rule (ENN) [15] to remove instances from the

majority class when two out of three of the nearest neighbors

of an instance contradict the class. Two improvements to

ENN are proposed in [17]: Repeated Edited Nearest Neighnor

(RENN) and All-KNN (AKNN). Both methods make multiple

passes over the training set repeating ENN. RENN just repeats

the ENN algorithm until no further eliminations can be made

from the edited set. AKNN repeats ENN for each sample

using incrementation values of k each time and removing the

sample if its label is not the predominant one at least for

one value of k. An undersampling approach called One-Side

Selection (OSS) is proposed in [18]. It is the use of Tomek’s

Link [14] followed by the application of CNN. Tomek’s

Link is used to remove noisy and borderline majority class

examples. Afterwards, the CNN removes examples from the

majority class that are distant from decision border. Then a

consistent subset of the majority class is formed.

The simplest approach for undersampling is the Random

Undersampling (RUS) [19]. RUS selects a subset of the

majority class randomly while rejecting the other instances.

So, the distribution of classes can be balanced. Several

techniques have been proposed to guide the undersampling.

In [20], authors present a clustering technique based on

undersampling considering the problem of class imbalance

for cardiovascular data. The objective was to narrow the gap

between the samples of majority class and the samples of

minority class. They grouped the samples of the majority

class into k clusters. After that, each cluster is combined

separately with the samples of the minority class to make k
different training datasets. Finally, all the combined datasets

are classified with a learning algorithm and the dataset with

the greatest precision is used to build the learning model.

Two undersampling strategies are introduced in this work [9],

they are based on a clustering technique to undersample the

majority class in order to produce the same number of data

samples as the minority class. In the first strategy, the cluster

centers are used to replace the entire majority class dataset.

As for the second strategy, the nearest neighbors to each

cluster center is used. The work presented in [21] provides an

undersampling framework to manage class imbalance in binary

datasets by removing potentially overlapped data points. Four

methods, based on neighbourhood searching with different

criteria, are designed to identify and eliminate majority class

instances from the overlapping region.

2) Oversampling Methods for Data-Level Based
Approaches: Unlike undersampling, oversampling consists

in increasing the number of minority class instances. This

can be done in different ways. The most common of these

methods is Random Oversampling (ROS), where minority

class instances are reproduced to ensure that the two class

instances are balanced. The problem is that there is a high

probability of overlearning, or overfitting, due to the same

instances occurring several times.

To avoid this overlearning problem, a new oversampling

method [22] is proposed called Synthetic Minority

Oversampling Technique (SMOTE). In SMOTE, the minority

class is oversampled by taking each minority class sample

and introducing synthetic examples along the line segments

joining any/all of the k minority class nearest neighbors.

Depending upon the amount of over-sampling required,

neighbors from the k-nearest neighbors are randomly chosen.

Cluster-based oversampling (CBOS) proposed by [23], first

uses the k-means algorithm to group the minority and majority

classes separately. All the clusters of the majority class, with

the exception of the largest, are randomly oversampled as

the same number of training examples as the largest cluster.

Then, the total number of majority clusters is equal to each

cluster of minority clusters. Authors of [24] proposed a

novel ADAptive SYNthetic (ADASYN) sampling approach

for learning from imbalanced datasets. ADASYN consists

in using a density distribution as a criterion of automatic
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decision of the number of synthetic samples which must be

generated for each minority example, and this by adaptively

changing the weights of the different minority examples to

compensate for the asymmetric distributions. The modified

synthetic minority oversampling technique (MSMOTE)

proposed by [25] is the variant of the synthetic minority

oversampling technique (SMOTE) which also takes into

account the distribution of minority class instances. It divides

the data belonging to the minority class into three categories

border, noise and latent according to their distance from

all the training instances. Another method called Safe-level

SMOTE (SSMOTE) have been developed in [26], based

on SMOTE. the main objectif of SSMOTE is to avoid the

generation of noisy samples. The main objective of SSMOTE

is to avoid the generation of noisy samples. Each minority

sample is first assigned with a security level value. Then only

the samples with higher security level values are selected to

generate new minority synthetic samples.The security level

value of each minority sample is defined as the number of

other minority samples among its k closest neighbors. The

study in [10] presents an oversampling method based on

k-means clustering and SMOTE (Synthetic Minority Over-

sampling Technique), which avoids the generation of noise

and overcomes imbalances between and within classes. The

results of experiments with 90 datasets show that the training

data oversampled with the proposed method improves the

results of the classification. In [27], the authors proposed

a method of Radial-Based Over-sampling (RBO), which

consists in finding regions in which synthetic minority-class

objects should be generated on the basis of the imbalance

distribution estimation with radial basic functions.

B. Algorithm-Level Based Approaches

Algorithm-level approach adapts existing classification

learning algorithms to guide learning towards minority class.

It requires a given specific knowledge of the corresponding

classifier and of the application field, knowing that in general

the classifier fails when the distribution of the classes is

uneven.

1) Ensemble Learning for algorithm-Level Based
Approaches: Involves improving the performance of single

classifiers by inducing several classifiers that may be the same

or different and combining them to make a new classifier.

Therefore, the basic idea is to build several classifiers from

the original data, and then aggregate their predictions when

unknown instances are presented. The well-known ensemble

methods are bagging and boosting.

Boosting is an iterative algorithm that involves assigning

different weights to individuals in the learning dataset. After

each iteration, the weight on uncorrectly classified individuals

increases and on correctly classified individuals decreases.

Since errors are often concentrated on the rare classes, one

might think that boosting improves learning on imbalanced

datasets by increasing the weights of individuals belonging to

the minority class. Different variants of boosting have been

proposed to solve data imbalance problems. The AdaBoost

algorithm of [28] is the most representative algorithm. It was

the first practical boosting algorithm, and remains one of the

most widely used and studied, with applications in numerous

fields.

In [29], authors proposed a boosting algorithm called:

RareBoost. This algorithm applies the following rule: if

the number of true positives is greater than the number

of false positives, the weight of well-classified individuals

decreases. The weight of misclassified individuals increases

if the number of true negatives is greater than that false

negatives. SMOTEBoost, proposed in [30], combines the

SMOTE algorithm with AdaBoost, resulting in a hybrid

sampling/boosting algorithm that outperforms both SMOTE

and AdaBoost. In [31], a simpler and faster alternative to

SMOTEBoost is proposed, which is another algorithm that

combines boosting and data sampling called RUSBoost. It is

designed to improve the performance of models trained on

skewed data.

In [12], the authors present an ensemble algorithm called:

EUSBoost based on RUSBoost, which combines random

undersampling with boosting algorithm. EUSBoost aims to

improve the existing proposals enhancing the performance

of the base classifiers by the usage of the evolutionary

undersampling approach. This approach promotes diversity

favoring the usage of different subsets of majority class

instances to train each base classifier.

Bagging also called bootstrap aggregating, is a machine

learning ensemble meta-algorithm based on a stochastic

process of updating the training dataset to create a diverse

set of classifiers. This method consists in constructing each

classifier using a sample of instances taken from the original

dataset with a replacement. In order to guarantee a sufficient

number of instances per classifier, while considering each

instance with equal weight, each sample generally contains the

same number of instances as in the original dataset. Finally,

when an unknown instance is presented to each individual

classifier, a majority or weighted vote is used to infer the class.

An overall machine learning method known as Random

Forest (RF) was proposed by [32]. It uses several trees

as classifiers using bagging. After obtaining the majority

vote on all classifiers, the RF method combines information

on all trees to reveal varying importance. In [33], authors

introduce an ensemble algorithm called: Roughly Balanced

(RB) bagging. It uses a novel sampling technique to improve

the original bagging algorithm for datasets with imbalanced

class distributions. For this sampling method, the number of

samples in the largest and smallest classes are different, but

they are effectively balanced when averaged over all of the

subsets.

In [34], a new type of bagging called Neighbourhood

Balanced Bagging (NBBag) is proposed. It is based on a

different steps. First, instead of integrating bagging with

pre-processing, the standard bagging idea is kept, but

sometimes radically. Probabilities of sampling examples to

bootstraps are changed by increasing the chance of drawing

minority examples. Furthermore, the role of difficult minority
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examples with respect to the type of their neighbourhood is

amplified. The strength of amplification can be parameterized

in their setting.

2) Cost-sensitive Learning for lgorithm-Level Based
Approaches: These algorithms are sensitive to different

costs associated with certain characteristics of the considered

problems. Costs can come from various aspects related to

a given real problem and can be provided by the field’s

expert or learned during the training phase of the classifier.

Many cost-sensitive methods have been proposed. A general

cost-sensitive learning framework, called “MetaCost” is

presented in [35]. It begins to learn an internal cost-sensitive

model by applying a cost-minimizing procedure, which

employs a base learning algorithm. Then, MetaCost estimates

class probabilities using bagging and then re-labels the

training instances with their minimum expected cost classes.

Finally, it relearns a model using the modified training set.

Another cost-sensitive approach called “Adacost” was

proposed in [36]. In this approach, examples belonging to

the rare class which are misclassified are assigned higher

weights than those belonging to the common class. It is

empirically demonstrated that the proposed system produces

lower cumulative misclassification costs.

In [37], authors study the effect of sampling and

threshold-moving in training cost-sensitive neural networks.

A threshold-moving technique was used to move the output

threshold toward inexpensive classes such that examples with

higher costs become harder to be misclassified. In [11],

cost-sensitive boosting algorithms to improve the classification

of imbalanced data were examined. Authors proposed three

cost-sensitive boosting algorithms called AdaC1, AdaC2 and

AdaC3 by introducing cost elements as part of learning in

AdaBoost’s weight update formula.

A wrapper framework incorporating the measurement of

evaluation (area under the curve (AUC) and G-mean) in

the objective function of cost sensitive Support Vector

Machine (SVM) directly is proposed in [38]. The main

goal is to improve the performance of the classification

by simultaneously optimizing the best pair of subset of

functionalities, and misclassification cost parameters.

The authors of [39] studied the class imbalance problem in

the context of neural networks using MultiLayer Perceptron

(MLP). A cost-sensitive algorithm (CSMLP) is proposed to

improve the discriminatory capacity of MLPs (two-class).

The CSMLP formulation is based on a common objective

function which uses a single cost parameter to distinguish

the importance of class errors. Authors of [40] introduced

an ensemble of cost-sensitive decision trees for imbalanced

classification. It is based on combining cost-sensitive decision

trees with random subspace based feature space partitioning.

III. PROPOSED APPROACH

Most classification learning algorithms are often biased

toward the majority class due to the data imbalance

distribution, which leads to a higher misclassification rate for

the minority class instances [3]. Unfortunately, the minority

class is usually the most important from a data analysis

perspective. So, such misclassification of minority instances

often has serious consequences in real applications. Another

critical factor in real world imbalanced data concerns presence

of a relatively large number of noise instances from the

majority class located inside the minority class. This problem

is commonly referred to as overlapping data and we named

it “behavioral noise”. The behavioral noise implies that some

instances of a class have similar characteristics to those of

a different class. The presence of noise has a severe impact

in learning problems. The generated models can become more

complex, showing less generalization abilities, lower precision,

and higher computational cost [41]. So, the classification

performance depends on these two main problems: class

imbalance and behavioral noise.

In this work, we focus on credit card fraud detection as a

very imbalanced and overlapped data classification problem,

where non-fraudulent samples are much more numerous than

fraud samples [3]. Also, it is known that some users share

a behavior where the transactions are similar. While the

transaction behavior of some users resembles no behavior

and may even behave like transactions unlike their labels.

For example, if a user’s credit card information is stolen,

fraudsters will make several large transactions in a short time

to maximize the benefits, while some normal users may also

make large transactions in a short time for certain reasons.

The normal behavior of an individual user is therefore close

to fraud. We define this type of transaction as behavioral

noise. The existence of behavioral noise pushes the system to

judge certain fraudulent transactions as authentic transactions.

This leads to an erroneous classification which can be costly.

Undetected fraudulent transactions (false positive) are much

more serious and costly than detecting normal behavior as

fraud (false negative). The cost of false positives is financial

in nature, it varies according to the amount of the transaction.

On the other hand, the cost of false negatives is measured

in terms of customer dissatisfaction, and this latter can be

resolved by strategies to compensate and retain customers.

The main objective of our approach, called “One Side

Behavioral Noise Reduction” (OSBNR) is to handle

behavioral noise to improve the classification of the minority

class instances. OSBNR consists of separating normal

transactions (majority class instances) from fraudulent ones

(minority class instances). Then, a cluster analysis is applied

to group similar instances of the minority class containing

the fraudulent transactions in several subsets, that form

several behavior groups. The second step eliminates normal

transactions behaviors, considered as behavioral noise, which

overlap with the fraudulent transactions behaviors.

Fig 1 shows the main steps of OSBNR approach:

1) Separate: separates the majority Dmj and minority

Dmn from the original training dataset.

2) Clustering: using k-means clustering algorithm [42] to

form samples of similar Dmn instances into a number
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Fig. 1 Flowchart of the OSBNR approach

of behavior clusters. Each cluster seems to have distinct

characteristics in the high-dimensional features space.

3) Reduction: carries out the behavioral noise reduction of

the majority instances with those of the minority class.

The Euclidean distance is used to measure the level

of similarity between the different clusters centers of

minority class and the majority class instances. So first,

we calculate the furthest distance dmaxi, 1 < i < k,

from minority instances to the cluster center Cmini for

each minority cluster according. Second, the distances

dmajij between majority instances and different clusters

centers of minority class Ci are obtained. As a result,

all majority instances in the minority clusters area are

identified if dmaxi ≥ dmajij . So, they are considered

as noisy instances and then eliminated.

4) Combination: we combine the reduced majority

instances set Dmjr with the minority instances set

Dmn to have a new training dataset Dtr.

Accurate identification and elimination of these instances

maximize the visibility of the minority class instances and

at the same time minimize excessive elimination of data.

IV. EXPERIMENTS AND RESULTS

A. Dataset Description

For this work, we use the Kaggle credit card fraud detection

dataset [43]. It contains transactions made by credit card

during two days of September 2013 by European card holders.

Table I provides statistics for the dataset and shows that the

minority class (fraud) accounts for 0.172% of all transactions.

Therefore, this dataset is highly imbalanced [3]. It contains

31 numerical features. Since some of the input features

contains financial information, the PCA transformation of 28

digital input features (named V1, . . . , V28) were performed

due to confidentiality issues. Three of the given features

weren’t transformed. Time feature shows the time between first

transaction and every other transaction in the dataset. Amount

feature is the amount’s value spent in a single transaction

made by credit card. Class feature represents the label, and

takes only 2 values: value 1 in case of fraud transaction and

0 otherwise.

TABLE I 
KAGGLE CREDIT CARD FRAUD DATASET DETAILS

Transactions Majority class Minority class Columns
284 807 284 315 492 31

B. Feature Selection

Feature selection is a fundamental technique that selects the

most relevant features from the given dataset. Choosing the

right features wisely and removing the less important ones can

reduce over-learning, improve accuracy, and reduce training

time. Visualization techniques can be helpful in this process.

Formally, we select a subset of features or attributes from

the set of features and eliminate redundant features that do

not contribute to performance. Thus, a feature is important

when its data distributions of the two classes are divergent.

Therefore, this feature can potentially separate the two classes

and improve prediction performance.

Fig. 2 shows the class distribution for some features of

our dataset. We can see for V9, V10, V11, V12 and V14 a

significant divergence of class distribution. They are therefore

features with a strong predictive power. So, we can keep

them during the models construction. Similarly, we can see

for feature V13 that the distribution of normal transactions

(majority class) corresponds to the distribution of fraudulent

transactions (minority class). This feature cannot effectively

contribute to the separation between the two classes. We

carried out this process for all 28 features. As a result, 11

relevant features were selected for our experiments: V3, V4,

V9, V10, V11, V12, V14, V16, V17, V18 and V19.

C. Classifiers and Resampling Techniques

In this work, we applied various resampling techniques

such as the Condensed Nearest Neighbour Rule (CNN) [13],

Tomek’s links (TL) [14], One-Side Selection (OSS) [18],

Edited Nearest Neighbour Rule (ENN) [15], Repeated Edited

Nearest Neighbor (RENN) [17], All-KNN (AKNN) [17] and

Neighbor Cleaning Rule (NCR) [16]. We evaluated their

performance with the proposed approach OSBNR using the

best and widely used classifiers: Random Forest (RF) and

Multilayer Perceptron (MLP) [44]:
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Fig. 2 Class distribution histogram on some features

• Random forest (RF) is an algorithm that can be used in

both classification and regression problems. It consists

of many decision trees. This algorithm works best when

there are more trees in the forest and prevents the model

from over-adapting. Each decision tree in the forest gives

results. These results are merged in order to obtain a more

precise and stable prediction [32].

• Multilayer perceptron (MLP) is an artificial neural

network with direct action which is made up of at least 3

layers of nodes: entry layer, hidden layer and exit layer.

Each node uses an activation function. The activation

function calculates the weighted sum of its inputs and

adds a bias. This allows us to decide which neuron should

be removed and not taken into account in the external

connections.

RF and MLP models parameters were determined from

various preliminary tests carried out on the training data, as

shown in Table II.

D. Evaluation Metrics

Evaluation metrics play an important role to assess and

guide learning algorithms [7]. The common metric used is

accuracy. However, accuracy is not a good indicator of the

actual classification performance when the class distribution

TABLE II
RF AND MLP PARAMETERS USED

Classifiers Parameter

Random forest (RF)
Number of trees = 20
Depth of each tree = 8

Impurity = Gini

Multilayer perceptron (MLP) Number of iterations = 100
Tolerance parameter = 1e-6

is not uniform, especially for the positive (minority) class.

Indeed, because it has less effect on accuracy compared to

the negative (majority) class. As in [45], we consider other

metrics summarized as follows, where:⎧⎪⎪⎨
⎪⎪⎩

FP false positive

FN false negative

TP true positive

TN true negative

• Precision or Positive Predictive Value (1): represents

the proportion of positive samples that were correctly

classified to the total number of positive predicted

samples.

Precision =
TP

TP + FP
(1)

• True Positive Rate (2): called Sensitivity or Recall, is the

number of actual positives which are predicted positives.

Recall =
TP

TP + FN
(2)

• F1-score or F-measure (3): represents the harmonic mean

of precision and recall. The value ranges from 0 to

1, if the value is high then F1-score indicates high

classification performance.

F1-score = 2× Precision×Recall

Precision+Recall
(3)

• AUC (4): represents the ability to distinguish classes,

which considers both the true positive rate TPR (2) and

the false positive rate FPR (5). AUC is based on the

consideration that the higher the true positive rate TPR
is, and the lower false positive rate FPR is, classification

performance is better.

AUC =
1 + TPR− FPR

2
(4)

Where False Positive Rate (FPR (5)) represents the proportion

of legitimate samples that were wrongly predicted as fraud.

FPR =
FP

FP + TN
(5)

V. RESULTS ANALYSIS

A. Training and Test Datasets Used for the Experiments

We present different experiments to compare the

performance of our proposed OSBNR approach and the

state-of-art resampling methods (CNN, ENN, AKNN, RENN,

TL, OSS, and NCR). As there is no rule-of-thumb for how to

divide a dataset into training and test sets, we have noticed
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that in the case of the 70/30 rule, the percentages of the

minority class of the training and test sets are: 80%, 20%

respectively of the total fraud. In order to demonstrate the

effectiveness of the proposed OSBNR method to deal with

the imbalance and overlapping between classes problem, we

studied 3 different divisions of the dataset by resampling the

minority class based on the ratios: 80/20, 70/30, 60/40 and

the majority class based on the 70/30 ratio. Table III presents

training and test datasets used as input of our OSBNR

approach (Fig. 1).

TABLE III 
TRAINING AND TEST DATASETS USED FOR THE EXPERIMENTS

Total Majority class Minority class
100% Dataset 284 807 284315 - 100% 492 - 100%

Rule 80/20
Training 199 413 199020 - 70% 393 - 80%

Test 85 394 85295 - 30% 99 - 20%

Rule 70/30
Training 199 364 199020 - 70% 344 - 70%

Test 85 443 85295 - 30% 148 - 30%

Rule 60/40
Training 199 315 199020 - 70% 295 - 60%

Test 85 492 85295 - 30% 197 - 40%

B. Performance Study of the OSBNR: Case of All Features

In this section, we analyze the impact of the proposed

OSBNR approach on the performance of each classifier by

comparing it with existing resampling methods taking into

account all the features and according to 3 different divisions

of the dataset. The results are calculated for four metrics: AUC,

Precision, Recall and F1-score.

Figs. 3 and 4 show the results using the AUC metric for

the RF and MLP classifiers respectively. The most interesting

observation is that the proposed OSBNR offers significantly

better performance compared to the other methods for the two

classifiers from the AUC point of view for all the distributions

of training and test sets.

For the RF classifier, the best score is obtained by

RF_OSBNR with an AUC value of (AUC = 0.9341),

RF_CNN takes second place with a score of (AUC = 0.9079),

when the training and test sets are set to 80/20 rule. For

the MLP classifier, the best AUC score rule is obtained by

MLP_OSBNR with a value of (AUC = 0.9487), followed by

MLP_OSS with a score of (AUC = 0.9079) when the training

and test sets are set to 80/20 rule.

Similarly, Figs. 5 and 6 present the results in terms

of precision. The results illustrated in Fig. 5 show that

OSBNR outperforms the other resampling methods for all the

distributions of the training and test sets. The best precision

score for the RF classifier is obtained by the OSBNR approach

when the training and test sets are set at 80% and 20% fraud

with a score of (Precision = 0.8686), while RF_CNN takes

second place with a score of (Precision = 0.8163).

Similar in MLP, as illustrated in Fig. 6, it is clear that the

best precision score is obtained by MLP_OSBNR with a score

of (Precision = 0.8979), followed by MLP_OSS with a

score of (Precision = 0.8511). Based on these results, we
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Fig. 3 AUC metric for OSBNR and the reference resampling approaches:
RF as base classifier case of all features
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Fig. 4 AUC metric for OSBNR and the reference resampling approaches:
MLP as base classifier case of all features

conclude that the proposed OSBNR can significantly improve

the recognition rate of minority samples.

Figs. 7 and 8 show the results obtained using Recall

measure. The interesting observation is that the RF and

MLP classifiers without preprocessing clearly offer the best

performance in terms of recall metric. Such a result was

expected in a way, because the resampling methods were

introduced to manage class imbalance and class overlap

problems.They eliminate the instances of the majority class

considered as noise to improve the prediction of instances of

the minority class, and this can slightly increase the rate of

false negatives. For the RF classifier, the second best recall

score is obtained by RF_OSS with a value of (Recall = 0.96)

when the training and test sets are set at 60% and 40% fraud.

Similarly, for MLP the second place is occupied by MLP_OSS
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Fig. 5 Precision metric for OSBNR and the reference resampling
approaches: RF as base classifier case of all features
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Fig. 6 Precision metric for OSBNR and the reference resampling
approaches: MLP as base classifier case of features

with a score of (Recall = 0.9329) with the 60/40 rule.

As for measure F1-score, Figs. 9 and 10 present the results

of all the resampling methods by applying the two learning

classifiers. We see that the OSBNR approach outperforms

the other resampling methods for all the distributions of

the training and test sets for two classifiers. For RF, the

best F1-score is obtained by RF_OSBNR with a score of

(F1− score = 0.8572) according to the 70/30 rule, followed

by RF_AKNN with a score of (F1 − score = 0.8436)

when applying rule 60/40 to divide the training and test sets.

Regarding MLP, the best score is obtained by MLP_CNN with

a F1-score of 0.8679 when the training and test sets are set at

60% and 40% fraud, MLP_OSBNR takes second place with

a value of 0.8648.
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Fig. 7 Recall metric for OSBNR and the reference resampling approaches:
RF as base classifier case of all features
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Fig. 8 Recall metric for OSBNR and the reference resampling approaches:
MLP as base classifier case of all features

 C. Performance Study of the OSBNR: Case of 
Relevant Features

In this section, we analyze the impact of the proposed

OSBNR on the performance of each classifier by comparing it

with existing resampling methods taking into account relevant

features and also according to the 3 different divisions of

the dataset. The results are calculated for four metrics: AUC,

Precision, Recall and F1-score.

In order to better situate the results, we start by reporting

on AUC metric. From Figs. 11 and 12, we can see that the

best AUC scores are obtained by RF and MLP combined

with OSBNR for all the distributions of the sets of training

and testing. For the RF classifier, the best score is obtained

by RF_OSBNR with an AUC value of (AUC = 0.9442),

RF_CNN takes second place with a score of (AUC = 0.9129)
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Fig. 9 F1-score metric for OSBNR and the reference resampling
approaches: RF as base classifier case of all features
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Fig. 10 F1-score metric for OSBNR and the reference resampling
approaches: MLP as base classifier case of all features

according to the 80/20 rule. Regarding the MLP classifier,

the best AUC score is obtained by MLP combined with

OSBNR when applying the 80/20 rule with a value of

(AUC = 0.9543), followed by MLP_RENN with a score of

(AUC = 0.9289), while MLP_OSS maintained its score with

the same value of (AUC = 0.9079).

From these results, we can conclude that after eliminating

redundant features that do not contribute to performance, we

get continuity or even improvement in predictive performance.

Similarly, Figs. 13 and 14 present the results in terms of

precision. The results illustrated in Fig. 13 show that the best

precision score for the RF classifier is obtained by the OSBNR

approach for all the distributions of training and test sets with a

best value score of (Precision = 0.8934) according to 80/20
rule, which means that this model offers a better prediction of

minority instances.
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Fig. 11 AUC metric for OSBNR and the reference resampling approaches:
RF as base classifier case of relevant features
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Fig. 12 AUC metric for OSBNR and the reference resampling approaches:
MLP as base classifier case of relevant features

Similar in MLP, As illustrated in Fig. 14, it is clear that the

best precision score is obtained by MLP_OSBNR with a best

score of (Precision = 0.909).

With regard to the Recall measure, Figs. 15 and 16

show the results obtained. we also notice that the RF and

MLP classifiers without preprocessing clearly offer the best

performance in terms of recall metric. For the RF classifier, the

second best recall score is obtained by RF_OSS with a value

of (Recall = 0.928) when the training and test sets are set at

70% and 30% fraud. Similarly, for MLP the second place is

occupied by MLP_AKNN with a score of (Recall = 0.9474)

according to the 70/30 rule.

As for measure F1-score, Figs. 15 and 16 show the results

of all the resampling methods by applying the two learning

classifiers. For RF, we see that the OSBNR outperforms
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Fig. 13 Precision metric for OSBNR and the reference resampling
approaches: RF as base classifier case of relevant features
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Fig. 14 Precision metric for OSBNR and the reference resampling
approaches: MLP as base classifier case of relevant features

the other resampling methods for all the distributions of the

training and test sets. Likewise, for MLP, the best score

is obtained by MLP combined with OSBNR for all the

distributions of training and test sets.

  D. Performance of the Re-sampling Methods in Terms 
of Processing Time

The time processing for all the compared methods is

presented in Fig. 19. It shows the average execution time

for the different resampling methods on the used dataset

considering all the features. From the results, we can see that

OSBNR is the fastest among all the comparative resampling

techniques and OSS ranks second. TL, ENN, NCL are

moderately fast for processing. We notice that the CNN

method is more complex because it takes a certain significant

operating time. Therefore, we conclude that a combination
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Fig. 15 Recall metric for OSBNR and the reference resampling approaches:
RF as base classifier case of relevant features
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Fig. 16 Recall metric for OSBNR and the reference resampling approaches:
MLP as base classifier case of relevant features

approach of OSBNR would be the optimal choice, offering

the best classification performance and requiring the least

processing time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provide a survey of the existing methods

for solving the two-class imbalanced classification problem.

Then we present a new approach called: One Side Behavioral

Noise Reduction (OSBNR). Our approach combines clustering

analysis and a behavioral noisy data reduction process.

To study the effectiveness of the proposed method, we

compare it to several state-of-the-art resampling methods. Two

learning classifier, namely Random Forest and MultiLayer

Perceptron, have been tested over these resampling methods.

Experimental results measured using four metrics (AUC,

Precision, Recall, F1-score) indicate that OSBNR achieves
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Fig. 17 F1-score metric for OSBNR and the reference resampling
approaches: RF as base classifier case of relevant features
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Fig. 18 F1-score metric for OSBNR and the reference resampling
approaches: MLP as base classifier case of relevant features

much better classification performance than the other

compared methods to deal with noise data problem with a

significant difference.

This work constitutes an important part of the framework

in development. Thus, we wish to study the behavior of the

scaling of our approach in the context of a real application.

This will raise two fundamental questions:

• Confidence and predictability of predictions for decision

making. The main objective of our explanatory approach

to machine learning is to propose methods to understand

and explain how the system produces its decisions in case

of real domain application.

• Notion of uncertainty in machine learning which is

of major importance and constitutes a key element of

modern machine learning methodology. It has gained in
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Fig. 19 Performance of the resampling methods: time processing

importance due to the increasing relevance of machine

learning in real applications.
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