Search results for: Wheeled Mobile Robots.
363 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences
Authors: Yuan-Jye Tseng, Ching-Yen Chen
Abstract:
In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.
Keywords: Cluster analysis, customer preferences, design evaluation, design for customer preferences, product design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776362 Augmented Reality on Android
Authors: Chunghan Li, Chang-Shyh Peng, Daisy F. Sang
Abstract:
Augmented Reality is an application which combines a live view of real-world environment and computer-generated images. This paper studies and demonstrates an efficient Augmented Reality development in the mobile Android environment with the native Java language and Android SDK. Major components include Barcode Reader, File Loader, Marker Detector, Transform Matrix Generator, and a cloud database.
Keywords: Augmented Reality, Android.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979361 Improving the Software Homologation Process through Peer Review: An Experience Report on Android Development Environment
Authors: Camila Bernardon, Diana Lemos, Mario Garcia, Thiago Souto, Bruno Bonifacio
Abstract:
In the current technological market environment, ensuring the quality of new products has become a complex challenge. In this scenario, companies have been investing in solutions that aim to reduce the execution time of software testing and lead to cost efficiency. However, companies that have a complex and specialized testing environment usually face barriers related to costly testing processes, especially in distributed settings. Sidia Institute of Technology works on research and development for the Android platform for mobile devices in Latin America. As we work in a global software development (GSD) scope, we have faced barriers caused by failures detected lately that have caused delays in the homologation release process on Android projects. Thus, we adopt an Internal Review process, using as an alternative to reduce these failures. In this paper it was presented the experience of a homologation team adopting an Internal Review process in order to increase the performance through of improving test efficiency. Using this approach, it was possible to realize a substantial improvement in quality, reliability and timeliness of our deliveries. Through the quantitative analyses, it was possible identify a positive growth in homologation efficiency of 6% after adoption of the process. In addition, we performed a qualitative analysis from the collected data through an online questionnaire. In particular, results show that association between failure reduction and review process adoption provides the most quality that has a positive effect on project milestones. We hope this report can be helpful to other companies and the scientific community to improve their process thereby increasing competitive advantages.
Keywords: Android, GSD, improvement quality process, mobile products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487360 Unmanned Aerial Vehicle Landing Based on Ultra-Wideband Localization System and Optimal Strategy for Searching Optimal Landing Point
Authors: Meng Wu
Abstract:
Unmanned aerial vehicle (UAV) landing technology is a common task that is required to be fulfilled by fly robots. In this paper, the Crazyflie 2.0 is located by ultra-wideband (UWB) localization system that contains four UWB anchors. Another UWB anchor is introduced and installed on a stationary platform. One cost function is designed to find the minimum distance between Crazyflie 2.0 and the anchor installed on the stationary platform. The coordinates of the anchor are unknown in advance, and the goal of the cost function is to define the location of the anchor, which can be considered as an optimal landing point. When the cost function reaches the minimum value, the corresponding coordinates of the UWB anchor fixed on the stationary platform can be calculated and defined as the landing point. The simulation shows the effectiveness of the method in this paper.
Keywords: Unmanned aerial vehicle landing, ultra-wideband localization system, ultra-wideband anchor, cost function, stationary platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16359 Controlling 6R Robot by Visionary System
Authors: Azamossadat Nourbakhsh, Moharram Habibnezhad Korayem
Abstract:
In the visual servoing systems, the data obtained by Visionary is used for controlling robots. In this project, at first the simulator which was proposed for simulating the performance of a 6R robot before, was examined in terms of software and test, and in the proposed simulator, existing defects were obviated. In the first version of simulation, the robot was directed toward the target object only in a Position-based method using two cameras in the environment. In the new version of the software, three cameras were used simultaneously. The camera which is installed as eye-inhand on the end-effector of the robot is used for visual servoing in a Feature-based method. The target object is recognized according to its characteristics and the robot is directed toward the object in compliance with an algorithm similar to the function of human-s eyes. Then, the function and accuracy of the operation of the robot are examined through Position-based visual servoing method using two cameras installed as eye-to-hand in the environment. Finally, the obtained results are tested under ANSI-RIA R15.05-2 standard.Keywords: 6R Robot , camera, visual servoing, Feature-based visual servoing, Position-based visual servoing, Performance tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385358 Implicit Force Control of a Position Controlled Robot – A Comparison with Explicit Algorithms
Authors: Alexander Winkler, Jozef Suchý
Abstract:
This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation.Keywords: Damping control, impedance control, robot force control, stability, stiffness control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2869357 Some Issues on Integrating Telepresence Technology into Industrial Robotic Assembly
Authors: Gunther Reinhart, Marwan Radi
Abstract:
Since the 1940s, many promising telepresence research results have been obtained. However, telepresence technology still has not reached industrial usage. As human intelligence is necessary for successful execution of most manual assembly tasks, the ability of the human is hindered in some cases, such as the assembly of heavy parts of small/medium lots or prototypes. In such a case of manual assembly, the help of industrial robots is mandatory. The telepresence technology can be considered as a solution for performing assembly tasks, where the human intelligence and haptic sense are needed to identify and minimize the errors during an assembly process and a robot is needed to carry heavy parts. In this paper, preliminary steps to integrate the telepresence technology into industrial robot systems are introduced. The system described here combines both, the human haptic sense and the industrial robot capability to perform a manual assembly task remotely using a force feedback joystick. Mapping between the joystick-s Degrees of Freedom (DOF) and the robot-s ones are introduced. Simulation and experimental results are shown and future work is discussed.Keywords: Assembly, Force Feedback, Industrial Robot, Teleassembly, Telepresence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244356 Neural Network Control of a Biped Robot Model with Composite Adaptation Low
Authors: Ahmad Forouzantabar
Abstract:
this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846355 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization
Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman
Abstract:
The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.Keywords: Preview control, walking, stabilization, humanoid robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591354 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.
Keywords: Cyanex 272, emulsion liquid membrane, multiwalled carbon nanotubes, nanofluid, response surface methodology, Samarium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857353 Robotic Assistance in Nursing Care: Survey on Challenges and Scenarios
Authors: Pascal Gliesche, Kathrin Seibert, Christian Kowalski, Dominik Domhoff, Max Pfingsthorn, Karin Wolf-Ostermann, Andreas Hein
Abstract:
Robotic assistance in nursing care is an increasingly important area of research and development. Facing a shortage of labor and an increasing number of people in need of care, the German Nursing Care Innovation Center (Pflegeinnovationszentrum, PIZ) aims to address these challenges from the side of technology. Little is known about nurses experiences with existing robotic assistance systems. Especially nurses perspectives on starting points for the development of robotic solutions, that target recurring burdensome tasks in everyday nursing care, are of interest. This paper presents findings focusing on robotics resulting from an explanatory mixed-methods study on nurses experiences with and their expectations for innovative technologies in nursing care in stationary and ambulant care facilities and hospitals in Germany. Based on the findings, eight scenarios for robotic assistance are identified based on the real needs of practitioners. An initial system addressing a single use-case is described to show perspectives for the use of robots in nursing care.Keywords: Robotics and automation, engineering management, engineering in medicine and biology, medical services, public healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236352 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method
Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson
Abstract:
Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.Keywords: Fault detection, inverse simulation, rover, ground robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946351 Development of a Real-Time Brain-Computer Interface for Interactive Robot Therapy: An Exploration of EEG and EMG Features during Hypnosis
Authors: Maryam Alimardani, Kazuo Hiraki
Abstract:
This study presents a framework for development of a new generation of therapy robots that can interact with users by monitoring their physiological and mental states. Here, we focused on one of the controversial methods of therapy, hypnotherapy. Hypnosis has shown to be useful in treatment of many clinical conditions. But, even for healthy people, it can be used as an effective technique for relaxation or enhancement of memory and concentration. Our aim is to develop a robot that collects information about user’s mental and physical states using electroencephalogram (EEG) and electromyography (EMG) signals and performs costeffective hypnosis at the comfort of user’s house. The presented framework consists of three main steps: (1) Find the EEG-correlates of mind state before, during, and after hypnosis and establish a cognitive model for state changes, (2) Develop a system that can track the changes in EEG and EMG activities in real time and determines if the user is ready for suggestion, and (3) Implement our system in a humanoid robot that will talk and conduct hypnosis on users based on their mental states. This paper presents a pilot study in regard to the first stage, detection of EEG and EMG features during hypnosis.Keywords: Hypnosis, EEG, robotherapy, brain-computer interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569350 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning
Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas
Abstract:
During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.Keywords: Cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533349 Embedded Hardware and Software Design of Omnidirectional Autonomous Robotic Platform Suitable for Advanced Driver Assistance Systems Testing with Focus on Modularity and Safety
Authors: Ondřej Lufinka, Jan Kadeřábek, Juraj Prstek, Jiří Skála, Kamil Kosturik
Abstract:
This paper deals with the problem of using Autonomous Robotic Platforms (ARP) for the ADAS (Advanced Driver Assistance Systems) testing in automotive. There are different possibilities of the testing already in development and lately, the ARP are beginning to be used more and more widely. ARP discussed in this paper explores the hardware and software design possibilities related to the field of embedded systems. The paper focuses in its chapters on the introduction of the problem in general, then it describes the proposed prototype concept and its principles from the embedded HW and SW point of view. It talks about the key features that can be used for the innovation of these platforms (e.g., modularity, omnidirectional movement, common and non-traditional sensors used for localization, synchronization of more platforms and cars together or safety mechanisms). In the end, the future possible development of the project is discussed as well.
Keywords: ADAS Systems, autonomous robotic platform, embedded systems, hardware, localization, modularity, multiple robots synchronization, omnidirectional movement, safety mechanisms, software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685348 Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service
Authors: Fei Peng, Jun Yuan, Chen Fan, Fan Jiang, Qian Sun, Yudi Liu
Abstract:
Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.
Keywords: Earth Station in motion, ITU standards, radio regulations, radio spectrum, satellite communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168347 Design and Implementation of Cricket-based Location Tracking System
Authors: Byung Ki Kim, Ho Min Jung, Jae-Bong Yoo, Wan Yeon Lee, Chan Young Park, Young Woong Ko
Abstract:
In this paper, we present a novel approach to location system under indoor environment. The key idea of our work is accurate distance estimation with cricket-based location system using A* algorithm. We also use magnetic sensor for detecting obstacles in indoor environment. Finally, we suggest how this system can be used in various applications such as asset tracking and monitoring.Keywords: Cricket, Indoor Location Tracking, Mobile Robot, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072346 A Comparative Study of Novel Opportunistic Routing Protocols in Mobile Ad Hoc Networks
Authors: R. Poonkuzhali, M. Y. Sanavullah, M. R. Gurupriya
Abstract:
Opportunistic routing is used, where the network has the features like dynamic topology changes and intermittent network connectivity. In Delay tolerant network or Disruption tolerant network opportunistic forwarding technique is widely used. The key idea of opportunistic routing is selecting forwarding nodes to forward data packets and coordination among these nodes to avoid duplicate transmissions. This paper gives the analysis of pros and cons of various opportunistic routing techniques used in MANET.
Keywords: Expected Transmission Count (ETX), Opportunistic routing, Proactive Source Routing (PSR), throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412345 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose
Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky
Abstract:
Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804344 Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria
Authors: C. I. Abiodun, S. O. Azi, J. S. Ojo, P. Akinyemi
Abstract:
The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.
Keywords: Break-point distances, path loss models, path loss exponent, received signal strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819343 Designing Mobile Application to Motivate Young People to Visit Cultural Heritage Sites
Authors: Yuko Hiramatsu, Fumihiro Sato, Atsushi Ito, Hiroyuki Hatano, Mie Sato, Yu Watanabe, Akira Sasaki
Abstract:
This paper presents a mobile phone application developed for sightseeing in Nikko, one of the cultural world heritages in Japan, using the BLE (Bluetooth Low Energy) beacon. Based on our pre-research, we decided to design our application for young people who walk around the area actively, but know little about the tradition and culture of Nikko. One solution is to construct many information boards to explain; however, it is difficult to construct new guide plates in cultural world heritage sites. The smartphone is a good solution to send such information to such visitors. This application was designed using a combination of the smartphone and beacons, set in the area, so that when a tourist passes near a beacon, the application displays information about the area including a map, historical or cultural information about the temples and shrines, and local shops nearby as well as a bus timetable. It is useful for foreigners, too. In addition, we developed quizzes relating to the culture and tradition of Nikko to provide information based on the Zeigarnik effect, a psychological effect. According to the results of our trials, tourists positively evaluated the basic information and young people who used the quiz function were able to learn the historical and cultural points. This application helped young visitors at Nikko to understand the cultural elements of the site. In addition, this application has a function to send notifications. This function is designed to provide information about the local community such as shops, local transportation companies and information office. The application hopes to also encourage people living in the area, and such cooperation from the local people will make this application vivid and inspire young visitors to feel that the cultural heritage site is still alive today. This is a gateway for young people to learn about a traditional place and understand the gravity of preserving such areas.
Keywords: BLE beacon, smartphone application, Zeigarnik effect, world heritage site, school trip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958342 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell
Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz
Abstract:
Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.
Keywords: Component, robotic, automated, production, offline programming, CAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112341 Modelling Sudoku Puzzles as Block-world Problems
Authors: Cecilia Nugraheni, Luciana Abednego
Abstract:
Sudoku is a kind of logic puzzles. Each puzzle consists of a board, which is a 9×9 cells, divided into nine 3×3 subblocks and a set of numbers from 1 to 9. The aim of this puzzle is to fill in every cell of the board with a number from 1 to 9 such that in every row, every column, and every subblock contains each number exactly one. Sudoku puzzles belong to combinatorial problem (NP complete). Sudoku puzzles can be solved by using a variety of techniques/algorithms such as genetic algorithms, heuristics, integer programming, and so on. In this paper, we propose a new approach for solving Sudoku which is by modelling them as block-world problems. In block-world problems, there are a number of boxes on the table with a particular order or arrangement. The objective of this problem is to change this arrangement into the targeted arrangement with the help of two types of robots. In this paper, we present three models for Sudoku. We modellized Sudoku as parameterized multi-agent systems. A parameterized multi-agent system is a multi-agent system which consists of several uniform/similar agents and the number of the agents in the system is stated as the parameter of this system. We use Temporal Logic of Actions (TLA) for formalizing our models.
Keywords: Sudoku puzzle, block world problem, parameterized multi agent systems modelling, Temporal Logic of Actions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437340 Development and Evaluation of a Portable Ammonia Gas Detector
Authors: Jaheon Gu, Wooyong Chung, Mijung Koo, Seonbok Lee, Gyoutae Park, Sangguk Ahn, Hiesik Kim, Jungil Park
Abstract:
In this paper, we present a portable ammonia gas detector for performing the gas safety management efficiently. The display of the detector is separated from its body. The display module is received the data measured from the detector using ZigBee. The detector has a rechargeable li-ion battery which can be use for 11~12 hours, and a Bluetooth module for sending the data to the PC or the smart devices. The data are sent to the server and can access using the web browser or mobile application. The range of the detection concentration is 0~100ppm.
Keywords: Ammonia, detector, gas safety, portable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538339 Exploring the Perspective of Service Quality in mHealth Services during the COVID-19 Pandemic
Authors: Wan-I Lee, Nelio Mendoza Figueredo
Abstract:
The impact of COVID-19 has a significant effect on all sectors of society globally. Health information technology (HIT) has become an effective health strategy in this age of distancing. In this regard, Mobile Health (mHealth) plays a critical role in managing patient and provider workflows during the COVID-19 pandemic. Therefore, the users' perception of service quality about mHealth services plays a significant role in shaping confidence and subsequent behaviors regarding the mHealth users' intention of use. This study's objective was to explore levels of user attributes analyzed by a qualitative method of how health practitioners and patients are satisfied or dissatisfied with using mHealth services; and analyzed the users' intention in the context of Taiwan during the COVID-19 pandemic. This research explores the experienced usability of a mHealth services during the Covid-19 pandemic. This study uses qualitative methods that include in-depth and semi-structured interviews that investigate participants' perceptions and experiences and the meanings they attribute to them. The five cases consisted of health practitioners, clinic staff, and patients' experiences using mHealth services. This study encourages participants to discuss issues related to the research question by asking open-ended questions, usually in one-to-one interviews. The findings show the positive and negative attributes of mHealth service quality. Hence, the significant importance of patients' and health practitioners' issues on several dimensions of perceived service quality is system quality, information quality, and interaction quality. A concept map for perceptions regards to emergency uses' intention of mHealth services process is depicted. The findings revealed that users pay more attention to "Medical care", "ease of use" and "utilitarian benefits" and have less importance for "Admissions and Convenience" and "Social influence". To improve mHealth services, the mHealth providers and health practitioners should better manage users' experiences to enhance mHealth services. This research contributes to the understanding of service quality issues in mHealth services during the COVID-19 pandemic.
Keywords: COVID-19, mobile health, mHealth, service quality, use intention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697338 Analytical Model of Connection Establishment Duration Calculation in Wireless Networks
Authors: Y. Chaiko
Abstract:
It is important to provide possibility of so called “handover" for the mobile subscriber from GSM network to Wi-Fi network and back. To solve specified problem it is necessary to estimate connection time between base station and wireless access point. Difficulty to estimate this parameter is that it doesn-t described in specifications of the standard and, hence, no recommended value is given. In this paper, the analytical model is presented that allows the estimating connection time between base station and IEEE 802.11 access point.Keywords: Access point, connection procedure, Wi-Fi network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722337 Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System
Authors: Aryanejad Mir Bahador Goli, Zahra Honarmand Shah Zileh
Abstract:
In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.Keywords: Flexible manufacturing system, generalizedstochastic Petri nets, Markov chain, performance evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902336 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa E. Abdallah, Bajes Y. Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.
Keywords: Ant colony-based routing, position-based routing, MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564335 Two Approaches to Code Mobility in an Agent-based E-commerce System
Authors: Costin Badica, Maria Ganzha, Marcin Paprzycki
Abstract:
Recently, a model multi-agent e-commerce system based on mobile buyer agents and transfer of strategy modules was proposed. In this paper a different approach to code mobility is introduced, where agent mobility is replaced by local agent creation supplemented by similar code mobility as in the original proposal. UML diagrams of agents involved in the new approach to mobility and the augmented system activity diagram are presented and discussed.
Keywords: Agent system, agent mobility, code mobility, e-commerce, UML formalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435334 Simple Agents Benefit Only from Simple Brains
Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde
Abstract:
In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.
Keywords: Neural network, probabilistic control, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430