

Abstract—Augmented Reality is an application which combines

a live view of real-world environment and computer-generated
images. This paper studies and demonstrates an efficient Augmented
Reality development in the mobile Android environment with the
native Java language and Android SDK. Major components include
Barcode Reader, File Loader, Marker Detector, Transform Matrix
Generator, and a cloud database.

Keywords—Augmented Reality, Android.

I. INTRODUCTION
UGMENTED Reality(AR) combines real and virtual
images for presentation. Augmented Reality is interactive

in real time and registered in 3D [2]. One of the most well-
known applications is the 1st & Ten System [1]. In the 1st &
Ten System the real-world elements are football field and
players, and the virtual element is a yellow line which
augments the image in real time. In the early stages of
research in AR, developments were limited by slow
processors and insufficient computer memories. However in
the last few years, due to much improved processing power
and broad availability of digital cameras, research in AR has
been advancing on both the personal computer and mobile
devices [12], [16].

Among all AR-capable mobile devices, the smart phone is
the most representative instrument. Consumers’ perspectives
of smart phones have been as fast changing as the growth of
the market. Phones are no longer only for voice
communications. Instead, they have evolved into multi-
tasking gadgets. Most smart phones are running high-end
multi-processing mobile operating systems, which come with
a suite of utilities such as camera, location positioning,
internet browsing, and so on. These smart phones are
packaged with general purpose processors that are as powerful
as that in a conventional personal computer in most daily
tasks. Such processing power enables application developers
to unleash their creativity on an entire different platform. And,
with the advantage of portability and ease of accessing cloud
services, many new ideas can now be realized; such as Google
Goggles [7] and Shazam [17].

Major modern mobile operating systems include Android,
iOS, Symbian, and Windows Mobile. Android, built
specifically for mobile devices, is the most popular and widely
adopted operating system. The learning curve of Android is

Chunghan Li was with the Master of Science in Computer Science

Program, California Lutheran University, Thousand Oaks, CA 91360, USA.
Chang-Shyh Peng and Daisy F. Sang are with the Department of Computer

Science, California Lutheran University, Thousand Oaks, CA 91360, USA, (e-
mail: peng@callutheran.edu, fcsang@csupomona.edu).

smooth, in large due to its openly available technical
documentation. Android provides a custom built virtual
machine that enables application testing and debugging [8].
Android apps can be efficiently sold via Android Market.
Current mobile devices do come with the constraint of limited
computational power and system resources. AR applications
with 3D visualization are mostly resource-draining tasks. Low
level languages, such as C/C++, are frequently adopted in
hope to improve the efficiency. For instance, QCAR [14] was
written in C. Such libraries are very much device dependent,
and supports only selective mobile devices [15].

In consideration of application portability and the support
of all mobile devices, this paper takes on the challenge of
developing an AR application in only the native Java and
Android’s official SDK. Paper continues with discussion of
application framework in Section II and resultant sample runs
and screenshots in Section III, and concludes in Section IV.

II. APPLICATION FRAMEWORK
Augmented Reality on Android builds an interactive and

distributed application on an Android phone. The application
uses an Android phone’s built-in camera to capture the initial
input in the format of a barcode, which corresponds to one of
the predefined categories (e.g. animals). Based on the initial
input, a cloud-based database is queried for a list of options
(e.g. dog, cat, mouse, etc.). This list of options is presented to
the user for a selection. Upon user's selection, the cloud-based
database is queried again for details of the selected 3D model.
Data of the selected 3D model is then loaded and converted in
preparation for presentation. Lastly, the 3D model data goes
through all necessary 3D transformation before being
displayed in the Android phone’s screen in Augmented
Reality.

The choice of language is Java; the most popular object-
oriented, system-independent, and portable language. With the
wide availability of Java Virtual Machine, Android apps in
Java can be readily used on any Android devices. Java Virtual
Machine on the other hand can introduce execution latency.
Better and more efficient algorithms are designed to minimize
side effects such as execution latency. To optimize the
portability, native Java is used without any 3rd party library in
all areas including 3D graphics and computer vision. Further,
this application also aims to ensure an acceptable user
experience.

According to the outlined framework, major application
functions include Barcode Reader, Model Loader, Marker
Detector, and Transform Matrix. Barcode Reader reads the
initial input in the form of a barcode. Model Loader has the
heavy responsibility of loading the representation data of the

Chunghan Li, Chang-Shyh Peng, Daisy F. Sang

Augmented Reality on Android

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:10, 2013

1302International Scholarly and Scientific Research & Innovation 7(10) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

10
, 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

70
97

.p
df

user-selected model. Marker Detector works with other
functions to calibrate the imaging device and prepare for the
output. Transform Matrix handles the image presentation
process.

A. Barcode Reader
With Android’s built-in camera and object recognition

functionality, initial input is recognized in the form of a
barcode that is surrounded by a rectangle, which is further
enclosed by a square (referred to as a marker throughout the
rest of this paper). Fig. 1 depicts a sample input.

Fig. 1 Sample Initial Input

Fig. 2 Standard Code 128 Barcode

Code 128 [5], a widely used standard and a very high-
density barcode symbology [9], is the selected encoding
scheme. It can encode all 128 ASCII characters and use a
check digit mechanism to minimize the chance of misreading.
As shown in Fig. 2, a standard Code 128 barcode will have six
sections: Quiet Zone, Start Character, Encoded Data, Check
Character, Stop Character, and Quiet Zone.

Quiet Zones, at least 10 times wider than the narrowest
element, are used to delimit the barcode in the front as well as
the end. In this application, barcodes are used not only for
input but also for orientating the marker. To improve the
accuracy and efficiency, Quiet Zones are replaced by a
surrounding rectangle. Each encoded character in the barcode
is composed of three bars and three spaces, where the stop
adds an additional extra bar of length 2. Both each bar or each
space can be 1, 2, 3 or 4 units (e.g. pixels) wide, the sum of
the widths of bars must be even, the sum of the widths of the
spaces must be odd, and with total 11 units per character. For
instance character "A" is encoded as 10100011000 where 1 is
a bar and 0 is a space. The check digit is a modulus 103
checksum. It is calculated by summing the start code value to

the products of each character's value multiplied by its
position in the barcode string. The start character and first
encoded value is in position 1. The sum of the start code value
and the products is divided by 103. The remainder is the check
digit's value, which is then converted into a character and
appended to the end of the barcode.

To improve the correctness of barcode reading, the Barcode
Reader employs multi-reading algorithm. A barcode is
scanned one line at a time. For each scan, neighboring lines
(couple of pixels above or below) are scanned as well. A
check character is factored in to verify the correctness.

B. Model Loader
With the recognized barcode, the Model Loader queries the

cloud database for a list of models. This list of models is
presented in the smart phone/device display for user to choose
from. Once the user makes the selection, the Model Loader
again queries the cloud database for the definition file of the
chosen model. Challenges in the design of Model Loader
include the compatibilities of various modeling definitions,
calculation efficiencies, and preparation of displaying a 3D
model on a 2D screen.

3D models are denoted by combinations of polygons (or
faces) and corresponding textures on each face. The selected
3D model is then, via UV Mapping [20], mapped to a 2D
image. Each 3D model is represented in the OBJ format [13].
OBJ developed by Wavefront Technology (now formally
known as Alias|Wavefront) [21], is a popular open geometry
definition in ASCII file format. It can be generated or
converted by most 3D graphic editor applications. On the
other hand, the native language for Android graphics is
OpenGL for Embedded Systems (OpenGL ES). OpenGL ES,
a subset of OpenGL, is developed for embedded devices such
as mobile phones, PDAs, and video game consoles [6]. There
are some critical incompatibilities, between OBJ and OpenGL
ES, that the Model Loader has to accommodate. In OBJ, it is
acceptable to use three or more vertices to define a face.
OpenGL ES allows only three. Triangulation is therefore
required to OBJ and OpenGL ES. Secondly, OpenGL ES
requires that each texture image be in the shape of a square
with the length of an integral power of 2. Further, each vertex
is defined once and can correspond to multiple faces In OBJ.
In OpenGL ES however, vertices shared in adjacent faces
need to be recognized separately for each face. Thus definition
of the model in OBJ needs to be translated according to the
OpenGL ES's specification.

Within the constraints of available processing power and on
board memory in the Android devices, the efficiency of the
application is equally critical. Improvement of efficiency starts
with downsizing the input file. Android has native support of
zip files in its Java library. The OBJ input files are text files,
which typically can be compressed to one third of the original
size. The efficiency of loading of 3D model data can be
improved accordingly. As soon as the OBJ file is fetched, the
Model Loader needs to parse the input. While there are built-
in parsing utilities in Java’s String class, its execution speed is

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:10, 2013

1303International Scholarly and Scientific Research & Innovation 7(10) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

10
, 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

70
97

.p
df

unbearably slow. Thus Model Loader's parsing is developed
from ground up with the character type instead of String class
and is executed upon each line of input.

Upon the parsing of the selected 3D model, the Model
Loader performs UV Mapping to create a 2D image
representation. UV Mapping maps a texture map to the
surface of a 3D object. The texture map is a 2D map, and can
be in various formats such as a patterned grid, a bitmap, a
raster image, etc. UV Mapping assigns pixels in the texture
map (UV-vertex) to vertices on the surface of 3D object. The
rendering process can then properly paint the 3D object in a
2D display. The surface of a 3D object is typically modeled as
an assembly of polygons or faces. In most 3D models, there
are many vertices at the intersection of multiple faces. Each of
such vertices corresponds to several UV-vertices, which in
turn is unique to each corresponding face. Such one-to-many
relationship unfortunately is not supported in the OpenGL ES
data structure. Those vertices will have to be duplicated in
order to meet the requirement of the one-to-one relationship in
OpenGL ES. The duplication of vertices introduces a
challenge to data storage. Since the number of vertices and
corresponding UV-vertices is not known until the entire OBJ
file is loaded, an array is not an option for data storage.
Instead, Model Loader implements a vector of vectors. Each
vertex is denoted as a node in the vector, and its
corresponding UV-vertices are stored as a vector of the node.
Once the loading of OBJ file is finished, information of
vertices and their UV-vertices are successfully calculated and
stored.

C. Marker Detector
Marker is used to calibrate the camera and to position the

chosen model in 3D reality. As shown in Fig. 1, a marker is in
the shape of a square in which each side is identified with a
straight line of thickness. The space taken up by the four sides
of the square is referred to as the negative region, in contract
to the positive region that denotes the space inside the marker.
The Marker Detector first converts the original image into a
binary true/false image where a bright pixel is denoted true
and a non-bright pixel is denoted false. The input image in
Android is recognized in YCbCr color space, which directly
contains brightness information [11]. By bit shifting AND/OR
operation, the brightness can be calculated as follows:

for(j=2;j<height;j++){
 temp = j*width*downScRate;
 for(i=2;i<width;i++){
 y = (0xff&((int) _image[i*downScRate+temp]))-16;
 if (y > white_limit){
 Image[i+j*width] = true;
 }else{
 Image[i+j*width] = false;
 }
 }
}

The downScRate is instrumented to improve efficiency. For
instance, if downScRate is 2, the algorithm will pick every
other pixel in both dimensions. The size of the converted
image will then be reduced by 75%.

From the converted binary image, adjacent bright pixels are
grouped into individual regions. The structure of the region is:

class Region{
 public int ID;
 public long volume;
 public boolean merged;
 public int x, y;
 public int top, bottom, left, right;
 public boolean isMarker;
 public Vector<Spot> ContourSP;
 public Vector<Spot> OutContourSP;
 public Line[] Lines;
}

ID is the region’s unique identification number. Volume

records the size of the region. If the volume is too small, the
region would be ignored as noise. Merged is set true when the
region is adjacent to another and is thus combined into one. X
and y denote the coordinate of a pixel in the region. This pair
of coordinates will be used in the outlining process. Top,
bottom, left, and right are the coordinates of the boundary of
the region. isMarker is the flag that indicates whether the
region can be a marker or not. ContourSP and OutContourSP
are custom classes that contain the coordinates of pixels,
inside or outside of a region, visited in the outlining process.
Lines is another custom class that identifies the four sides of
the marker.

The Marker Detector then outlines each region to identify
the four sides of the marker. If a positive region enclosed by
four straight lines is identified, the Marker Detector will
recognize the negative region and its perimeter. Once the
perimeter is found to be a quadrilateral, this negative region is
marked as a marker (denoted by isMarker being true). For the
precise equation of each side of the quadrilateral, detected
markers are outlined pixel by pixel. The coordinates of these
pixels are grouped and averaged for each side. With the help
of the equations of these four sides, the four corners’
coordinates can then be correctly calculated. These
coordinates will later be used for the presentation of the
chosen 3D model in the smart phone's display.

D. Transform Matrix Generator
The next step is for the Transform Matrix Generator to

generate the transform matrices which translate between the
2D display and OpenGL ES 3D presentation in Android
systems. First, a transformation is calculated to coordinate the
2D display (on which the detected marker was defined) and
OpenGL ES 3D presentation in Android systems. Secondly, a
normalization process is implemented to estimate the model
size in a constant unit distance between the marker and
camera. A system of corresponding equations is defined with

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:10, 2013

1304International Scholarly and Scientific Research & Innovation 7(10) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

10
, 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

70
97

.p
df

the use of matrix production. Equations are then solved again
with Gaussian Elimination [10], [18], [19]. The pose matrix,
resulting from these heavy calculations, enables OpenGL ES
to present the model in correct rotation and orientation.

III. SAMPLE RUNS
The application was deployed and tested on a Google

Nexus One with 3Mbps downstream bandwidth. Figs. 3 and 4
showcase the efficiencies of the Model Loader. In Fig. 3, the
OBJ file size is 75Kb and texture data file size is 103Kb.
There are 944 vertices and 1911 triangles definitions in the
model. The total loading time is 1.6 second. In Fig. 4, the OBJ
file size is 240Kb and texture data files (10 files in all) size is
213Kb. There are 3783 vertices and 6576 triangles definitions
in the model. The total loading time is 4.7 second. Figs. 5 to 8
highlight the execution of the entire AR application. Fig. 5
shows the barcode scanning. The corresponding model list via
the cloud server is depicted in Fig. 6. Upon the successful
transmission of the model file, a 3D model can be displayed
on the Android screen as in Figs. 7 and 8. A complete demo
video and the source codes are available online at [3] and [4],
respectively.

Fig. 3 Model Loader Timing 1

Fig. 4 Model Loader Timing 2

Fig. 5 Barcode Scanning

Fig. 6 Model List

Fig. 7 Initial 3D Model Display

Fig. 8 Rotated 3D Model Display

IV. CONCLUSION
This paper studied and developed an interactive and real-

time application of Augmented Reality on an Android device
with cloud database and only the native Java and Android's
official SDK. As technology improves, AR on mobile devices
will be more accessible to the general public. With maturing
cloud services, mobile AR apps will invade users' daily life in
the near future. Monopoly players can visualize each
property's weather, landscape, and seasonal features via smart
phone. Sports card traders can remotely examine their card of
interest via a 4G touchpad. Ad feeders can present product
details, in 3D AR, to their prospective buyers. The outlook of
AR applications is even more interesting with the
development of mobile wearable devices; just imagine a 3D
holographic image overlaying the real world right in front our
naked eyes!

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:10, 2013

1305International Scholarly and Scientific Research & Innovation 7(10) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

10
, 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

70
97

.p
df

APPENDIX
Following is the hierarchy of the source code. Details are

presented in [4].
com.graduate.aa
 AndroidAR.java
 OBJItems.java
 Setting.java
com.graduate.barcode
 CodeConverter.java
 CodeReader.java
com.graduate.detector
 Detector.java
 DetectorFeedback.java
 DetectorView.java
 Label.java
 LabelMap.java
 Line.java
 Marker.java
 Region.java
 Spot.java
com.graduate.loader
 DefaultPlane.java
 Mtl.java
 OBJLoader.java
 OBJPart.java
 OBJRender.java
 Vertex.java
 VertexLink.java
com.graduate.TMgenerator
 Matrix.java
 TMgenerato.java

REFERENCES
[1] 1st & Ten system (graphic system), http://en.wikipedia.org/

wiki/1st_%26_Ten_(graphics_system), last accessed 2012.
[2] Augmented Reality, http://en.wikipedia.org/wiki/Augmented_reality,

last accessed, 2012
[3] Augmented Reality on Android demo, https://docs.google.com/file/

d/0B5TOGbkpt0cVTXB5djNOQTBDaVU/edit?usp=sharing, last
accessed 2013.

[4] Augmented Reality on Android source code, https://docs.google.com
/file/d/0B5TOGbkpt0cVNEhmZEtySWl4bnM/edit?usp=sharing, last
accessed 2013.

[5] Code 128, http://en.wikipedia.org/wiki/Code_128, last accessed, 2012
[6] S. Conder and L. Darcey, "Android wireless Application Development,

2nd Edition ", Addison-Wesley, 2010.
[7] Google Goggles, http://www.google.com/mobile/goggles/, last accessed

2012.
[8] T. Grønli, J. Hansen, and G. Ghinea, "Android vs Windows Mobile vs.

Java ME: A Comparative Study of Mobile Development Environments",
Proceedings of the 3rd International Conference on PErvasive
Technologies Related to Assitive Environments, 2010.

[9] T. Kan, C. Teng, and W. Chou, "Applying QR Code in Augmented
Reality Applications", Proceedings of the 8th International Conference
on Virtual Reality Continuum and Its Applications in Industry, 2009.

[10] H. Katon and M. Billinghurst, "Marker Tracking and HMD Calibration
for a Video-Based Augmented Reality Conferencing", Proceedings of
the 2nd International Workshop on Augmented Reality, 1999.

[11] H. B. Kekre, S. D. Thepade, A. Athawale, and A. Parkar, "Using
Assorted Color Spaces and Pixel Window Sizes for Colorization of
Grayscale Image", Proceedings of the International Conference and
Workshop on Emerging Trends in Technology, 2010.

[12] R. Meier, "Professional Android 2 Application Development", Wrox,
2010.

[13] OBJ File, http://www.martinreddy.net/gfx/3d/OBJ.spec, last accessed
2013.

[14] QDevNet, http://developer.qualcomm.com/dev/augmented-reality, last
accessed 2013.

[15] QDevNet AR SDK, http://ar.qualcomm.at/qdevnet/sdk, last accessed
2013.

[16] D. Schmalatieg and D. Wagner, "Experiences with Handheld
Augmented Reality", Proceeding of the 6th International Symposium on
Mixed and Augmented Reality, 2007.

[17] Shazam, http://www.shazam.com/, last accessed 2012.
[18] Systems of Linear Equations: Solving by Gaussian Elimination,

http://www.purplemath.com/modules/systlin1.htm, last accessed, 2012.
[19] L. N. Trefethen, "Three Mysteries of Gaussian Elimination", ACM

SIGNUM Newsletter, Volume 20, Issue 4, 1985.
[20] UV Mapping, http://en.wikipedia.org/wiki/UV_mapping, last accessed

2013.
[21] Wavefront Technology (Alias|Wavefront), http://www.autodesk.com/,

last accessed 2013.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:7, No:10, 2013

1306International Scholarly and Scientific Research & Innovation 7(10) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:7

, N
o:

10
, 2

01
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

70
97

.p
df

