Search results for: Associativity Based Routing (ABR)
10800 A Fast Object Detection Method with Rotation Invariant Features
Authors: Zilong He, Yuesheng Zhu
Abstract:
Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.Keywords: gradient feature, online learning, rotationinvariance, template feature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247710799 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits
Authors: Ali Ganoun
Abstract:
This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.
Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159310798 Green Building Materials: Hemp Oil Based Biocomposites
Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan
Abstract:
Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347210797 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based On Multi-Scale Entropy and Multivariate Statistics
Authors: S. Aouabdi, M. Taibi
Abstract:
This paper presents powerful techniques for the development of a new monitoring method based on multi-scale entropy (MSE) in order to characterize the behaviour of the concentrations of different gases present in the synthesis of Ammonia and soft-sensor based on Principal Component Analysis (PCA).Keywords: Ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivariate statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214810796 Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion
Authors: Bing-Fei Wu, Yen-Lin Chen, Chung-Cheng Chiu
Abstract:
In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can automatically and correctly segment objects with various illuminations into separated images for further processing. Experiments on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed methods.1
Keywords: image segmentation, multilevel thresholding, clustering, discriminant analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203510795 Complementary Energy Path Adiabatic Logic based Full Adder Circuit
Authors: Shipra Upadhyay , R. K. Nagaria, R. A. Mishra
Abstract:
In this paper, we present the design and experimental evaluation of complementary energy path adiabatic logic (CEPAL) based 1 bit full adder circuit. A simulative investigation on the proposed full adder has been done using VIRTUOSO SPECTRE simulator of cadence in 0.18μm UMC technology and its performance has been compared with the conventional CMOS full adder circuit. The CEPAL based full adder circuit exhibits the energy saving of 70% to the conventional CMOS full adder circuit, at 100 MHz frequency and 1.8V operating voltage.Keywords: Adiabatic, CEPAL, full adder, power clock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244510794 Efficient Frontier - Comparing Different Volatility Estimators
Authors: Tea Poklepović, Zdravka Aljinović, Mario Matković
Abstract:
Modern Portfolio Theory (MPT) according to Markowitz states that investors form mean-variance efficient portfolios which maximizes their utility. Markowitz proposed the standard deviation as a simple measure for portfolio risk and the lower semi-variance as the only risk measure of interest to rational investors. This paper uses a third volatility estimator based on intraday data and compares three efficient frontiers on the Croatian Stock Market. The results show that range-based volatility estimator outperforms both mean-variance and lower semi-variance model.
Keywords: Variance, lower semi-variance, range-based volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257810793 Measuring the Development Level of Chinese Regional Service Industry: An Empirical Analysis based on Entropy Weight and TOPSIS
Abstract:
Using entropy weight and TOPSIS method, a comprehensive evaluation is done on the development level of Chinese regional service industry in this paper. Firstly, based on existing research results, an evaluation index system is constructed from the scale of development, the industrial structure and the economic benefits. An evaluation model is then built up based on entropy weight and TOPSIS, and an empirical analysis is conducted on the development level of service industries in 31 Chinese provinces during 2006 and 2009 from the two dimensions or time series and cross section, which provides new idea for assessing regional service industry. Furthermore, the 31 provinces are classified into four categories based on the evaluation results, and deep analysis is carried out on the evaluation results.Keywords: Chinese regional service industry, Development level, Entropy weight, TOPSIS Evaluation Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150610792 Knowledge Management Model for Modern Retail Business: A Conceptual Framework
Authors: M. W. Yip, H. H. Ng, S. Din, N. Abu Bakar
Abstract:
This paper reviewed the relationships between the Knowledge Management (KM) activities and its perceived benefits in the knowledge based organisations. KM activities include: knowledge identification, knowledge acquisition, knowledge application, knowledge sharing, knowledge creation and knowledge preservation. And the perceived benefits of KM are fast customer responsiveness, operation excellence and high innovative intensity. Based on the above review, a conceptual framework for KM implementation in retail business organisations has been proposed. Finally the paper forwarded some limitations of the framework and based on which, directions for future research had been suggested.
Keywords: Knowledge Management, Knowledge Management Activities, Retail Business, Knowledge Economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484910791 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems
Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras
Abstract:
The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.
Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95110790 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193510789 Efficient Web Usage Mining Based on K-Medoids Clustering Technique
Authors: P. Sengottuvelan, T. Gopalakrishnan
Abstract:
Web Usage Mining is the application of data mining techniques to find usage patterns from web log data, so as to grasp required patterns and serve the requirements of Web-based applications. User’s expertise on the internet may be improved by minimizing user’s web access latency. This may be done by predicting the future search page earlier and the same may be prefetched and cached. Therefore, to enhance the standard of web services, it is needed topic to research the user web navigation behavior. Analysis of user’s web navigation behavior is achieved through modeling web navigation history. We propose this technique which cluster’s the user sessions, based on the K-medoids technique.Keywords: Clustering, K-medoids, Recommendation, User Session, Web Usage Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139610788 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design
Authors: D. Mondal, A. Chakrabarti, A. Sengupta
Abstract:
This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195610787 Characterization of an Almond Shell Composite Based on PHBH
Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart
Abstract:
The utilization of almond crop by-products to obtain Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) (PHBH)-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of Oligomer Lactic Acid (OLA 8) as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.
Keywords: Almond shell, PHBH, composite, polymer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39610786 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System
Authors: Manisha Dubey, Aalok Dubey
Abstract:
This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273610785 Ontology-Based Systemizing of the Science Information Devoted to Waste Utilizing by Methanogenesis
Authors: Ye. Shapovalov, V. Shapovalov, O. Stryzhak, A. Salyuk
Abstract:
Over the past decades, amount of scientific information has been growing exponentially. It became more complicated to process and systemize this amount of data. The approach to systematization of scientific information on the production of biogas based on the ontological IT platform “T.O.D.O.S.” has been developed. It has been proposed to select semantic characteristics of each work for their further introduction into the IT platform “T.O.D.O.S.”. An ontological graph with a ranking function for previous scientific research and for a system of selection of microorganisms has been worked out. These systems provide high performance of information management of scientific information.
Keywords: Ontology-based analysis, analysis of scientific data, methanogenesys, microorganism hierarchy, T.O.D.O.S.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73410784 Quantification of Technology Innovation Usinga Risk-Based Framework
Authors: Gerard E. Sleefe
Abstract:
There is significant interest in achieving technology innovation through new product development activities. It is recognized, however, that traditional project management practices focused only on performance, cost, and schedule attributes, can often lead to risk mitigation strategies that limit new technology innovation. In this paper, a new approach is proposed for formally managing and quantifying technology innovation. This approach uses a risk-based framework that simultaneously optimizes innovation attributes along with traditional project management and system engineering attributes. To demonstrate the efficacy of the new riskbased approach, a comprehensive product development experiment was conducted. This experiment simultaneously managed the innovation risks and the product delivery risks through the proposed risk-based framework. Quantitative metrics for technology innovation were tracked and the experimental results indicate that the risk-based approach can simultaneously achieve both project deliverable and innovation objectives.Keywords: innovation, risk assessment, product development, technology management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159910783 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54110782 Event Template Generation for News Articles
Authors: A. Kowcika, E. Umamaheswari, T.V. Geetha
Abstract:
In this paper we focus on event extraction from Tamil news article. This system utilizes a scoring scheme for extracting and grouping event-specific sentences. Using this scoring scheme eventspecific clustering is performed for multiple documents. Events are extracted from each document using a scoring scheme based on feature score and condition score. Similarly event specific sentences are clustered from multiple documents using this scoring scheme. The proposed system builds the Event Template based on user specified query. The templates are filled with event specific details like person, location and timeline extracted from the formed clusters. The proposed system applies these methodologies for Tamil news articles that have been enconverted into UNL graphs using a Tamil to UNL-enconverter. The main intention of this work is to generate an event based template.Keywords: Event Extraction, Score based Clustering, Segmentation, Template Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169910781 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89210780 Play in College: Shifting Perspectives and Creative Problem-Based Play
Authors: Agni Stylianou-Georgiou, Eliza Pitri
Abstract:
This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.Keywords: Creative problem-based play, educational games, flexible thinking, tertiary education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88410779 CMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration
Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong
Abstract:
Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metal-insulator-Si-insulator-metal nanoplasmonic waveguide and the other is metal-insulator-Si hybrid plasmonic waveguide. Various passive and active photonic devices have been experimentally demonstrated based on these two plasmonic waveguide platforms.
Keywords: Plasmonics, on-chip integration, Silicon photonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220810778 Optimizing Allocation of Two Dimensional Irregular Shapes using an Agent Based Approach
Authors: Ramin Halavati, Saeed B. Shouraki, Mahdieh Noroozian, Saman H. Zadeh
Abstract:
Packing problems arise in a wide variety of application areas. The basic problem is that of determining an efficient arrangement of different objects in a region without any overlap and with minimal wasted gap between shapes. This paper presents a novel population based approach for optimizing arrangement of irregular shapes. In this approach, each shape is coded as an agent and the agents' reproductions and grouping policies results in arrangements of the objects in positions with least wasted area between them. The approach is implemented in an application for cutting sheets and test results on several problems from literature are presented.Keywords: Optimization, Bin Packing, Agent Based Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249310777 An ICA Algorithm for Separation of Convolutive Mixture of Speech Signals
Authors: Rajkishore Prasad, Hiroshi Saruwatari, Kiyohiro Shikano
Abstract:
This paper describes Independent Component Analysis (ICA) based fixed-point algorithm for the blind separation of the convolutive mixture of speech, picked-up by a linear microphone array. The proposed algorithm extracts independent sources by non- Gaussianizing the Time-Frequency Series of Speech (TFSS) in a deflationary way. The degree of non-Gaussianization is measured by negentropy. The relative performances of algorithm under random initialization and Null beamformer (NBF) based initialization are studied. It has been found that an NBF based initial value gives speedy convergence as well as better separation performance
Keywords: Blind signal separation, independent component analysis, negentropy, convolutive mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177810776 Content-Based Image Retrieval Using HSV Color Space Features
Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari
Abstract:
In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.
Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66010775 Software Tools for System Identification and Control using Neural Networks in Process Engineering
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.Keywords: Distillation, neural networks, software tools, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270710774 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Han Xiao, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172510773 Constraint Based Frequent Pattern Mining Technique for Solving GCS Problem
Authors: First G.M. Karthik, Second Ramachandra.V.Pujeri, Dr.
Abstract:
Generalized Center String (GCS) problem are generalized from Common Approximate Substring problem and Common substring problems. GCS are known to be NP-hard allowing the problems lies in the explosion of potential candidates. Finding longest center string without concerning the sequence that may not contain any motifs is not known in advance in any particular biological gene process. GCS solved by frequent pattern-mining techniques and known to be fixed parameter tractable based on the fixed input sequence length and symbol set size. Efficient method known as Bpriori algorithms can solve GCS with reasonable time/space complexities. Bpriori 2 and Bpriori 3-2 algorithm are been proposed of any length and any positions of all their instances in input sequences. In this paper, we reduced the time/space complexity of Bpriori algorithm by Constrained Based Frequent Pattern mining (CBFP) technique which integrates the idea of Constraint Based Mining and FP-tree mining. CBFP mining technique solves the GCS problem works for all center string of any length, but also for the positions of all their mutated copies of input sequence. CBFP mining technique construct TRIE like with FP tree to represent the mutated copies of center string of any length, along with constraints to restraint growth of the consensus tree. The complexity analysis for Constrained Based FP mining technique and Bpriori algorithm is done based on the worst case and average case approach. Algorithm's correctness compared with the Bpriori algorithm using artificial data is shown.Keywords: Constraint Based Mining, FP tree, Data mining, GCS problem, CBFP mining technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170210772 A Complexity-Based Approach in Image Compression using Neural Networks
Authors: Hadi Veisi, Mansour Jamzad
Abstract:
In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222210771 Colour Image Compression Method Based On Fractal Block Coding Technique
Authors: Dibyendu Ghoshal, Shimal Das
Abstract:
Image compression based on fractal coding is a lossy compression method and normally used for gray level images range and domain blocks in rectangular shape. Fractal based digital image compression technique provide a large compression ratio and in this paper, it is proposed using YUV colour space and the fractal theory which is based on iterated transformation. Fractal geometry is mainly applied in the current study towards colour image compression coding. These colour images possesses correlations among the colour components and hence high compression ratio can be achieved by exploiting all these redundancies. The proposed method utilises the self-similarity in the colour image as well as the cross-correlations between them. Experimental results show that the greater compression ratio can be achieved with large domain blocks but more trade off in image quality is good to acceptable at less than 1 bit per pixel.
Keywords: Fractal coding, Iterated Function System (IFS), Image compression, YUV colour space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977