Search results for: Pressurized Water Reactor
2022 Ecotoxicity Evaluation and Suggestion of Remediation Method of ZnO Nanoparticles in Aqueous Phase
Authors: Hyunsang Kim, Younghun Kim, Younghee Kim, Sangku Lee
Abstract:
We investigated ecotoxicity and performed experiment for removing ZnO nanoparticles in water. Short term exposure of hatching test using fertilized eggs (O. latipes) showed deformity in 5ppm of ZnO nanoparticles solution. And in 10ppm ZnO nanoparticles solution delayed hatching was observed. Hereine, chemical precipitation method was suggested for removing ZnO nanoparticles in water. The precipitated ZnO nanoparticles showed the form of ZnS after addition of Na2S, and the form of Zn3(PO4)2 for Na2HPO4. The removal efficiency of ZnO nanoparticles in water was closed to 100% for two cases. In ecotoxicity evaluation of as-precipitated ZnS and Zn3(PO4)2, they did not cause any acute toxicity for D. magna. It is noted that this precipitation treatment of ZnO is effective to reduce the potential cytotoxicity.Keywords: ZnO nanoparticles, ZnS, Zn3(PO4)2, ecotoxicity evaluation, chemical precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18692021 The Absence of a National Industrial Effluent Policy: Imminent Risk to the Brazilian Bodies of Water
Authors: Aline Alves Bandeira, Maria Cecília de Paula Silva
Abstract:
The existing legal gap regarding thes treatment and final disposal of industrial effluents in Brazil promotes legal uncertainty. The government has not structured itself to guarantee environmental protection. The current legal system and public policies must guarantee the protection of bodies of water and an effective treatment of industrial effluents. This is because economic progress, eco-efficiency and industrial ecology are inseparable. The lack of protection for the water bodies weakens environmental protection, with abuses by companies that do not give due treatment to their effluents, or fail to present the water balance of their factories. It is considered necessary to enact a specific law on industrial effluents related to a National Industrial Effluent Policy, because it is the location of the largest Integrated Industrial Complex in the Southern Hemisphere. The regulation of this subject cannot be limited by decrees of the local Executive Branch, allowing the inspection of the industrial activity or enterprise to be affected fundamentally by environmental self-control, or by private institutions.
Keywords: Effluent policy, environmental law, environmental management, industrial effluents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10342020 The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia
Authors: Eka Sari, Siti Syamsiah, Hary Sulistyo, Muslikhin
Abstract:
Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 xKeywords: Biodegradation, lignin, PhanerochaeteChrysosporium, SSF, Water Hyacinth, Bioethanol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25802019 Groundwater Quality Assessment around Nagalkeni Tannery Industrial Belt
Authors: D. Sivakumar
Abstract:
The groundwater quality was assessed nearby places of Nagalkeni, Chennai, Tamil Nadu, India. The selected physico-chemical parameters were pH, EC, TDS, total hardness (TH), anions like Ca, Mg, Na and K, and cations like SO4, NO3, Cl2, HCO3, and CO3, and Cr(VI). In order to suit the groundwater for drinking and irrigation purposes, compared the value of selected parameters with the value of selected parameters from BIS drinking water quality standard and irrigation water quality indices. The physico-chemical study of the groundwater systems of selected sites of nearby places of Nagalkeni showed that the groundwater is nearly acidic and mostly oxidizing in nature and hence, water is not suitable for drinking purpose directly. The results of the irrigation indices indicated that the groundwater samples in the study area found to be brackish water, results, groundwater from the study area is also not suitable for irrigation purpose directly, but the groundwater may be used after implementing some suitable treatment techniques.
Keywords: Physico-Chemical Parameters, Tannery Industry Effluent, Groundwater Quality Indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22182018 River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand
Authors: S. Chuenchooklin
Abstract:
This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.
Keywords: HEC-RAS, HMS, pumping stations, cascade weirs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22852017 Static Analysis and Pseudostatic Slope Stability
Authors: Meftah Ali
Abstract:
This article aims to analyze the static stability and pseudostatic slope by using different methods such as: Bishop method, Junbu, Ordinary, Morgenstern-price and GLE. The two dimensional modeling of slope stability under various loading as: the earthquake effect, the water level and road mobile charges. The results show that the slope is stable in the static case without water, but in other cases, the slope lost its stability and give unstable. The calculation of safety factor is to evaluate the stability of the slope using the limit equilibrium method despite the difference between the results obtained by these methods that do not rely on the same assumptions. In the end, the results of this study illuminate well the influence of the action of water, moving loads and the earthquake on the stability of the slope.Keywords: Slope stability, pseudo static, safety factor, limit equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33612016 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow
Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam
Abstract:
Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.
Keywords: Water hammer, hydraulic transient, pipe systems, characteristics method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10342015 Issues Problems of Sedimentation in Reservoir Siazakh Dam Case Study
Authors: Reza Gharehkhani
Abstract:
Sedimentation in reservoirs lowers the quality of consumed water, reduce the volume of reservoir, lowers the controllable amount of flood, increases the risk of water overflow during possible floods and the risk of reversal and reduction of dam's useful life. So in all stages of dam establishment such as cognitive studies, phase-1 studies of design, control, construction and maintenance, the problem of sedimentation in reservoir should be considered. What engineers need to do is examine and develop the methods to keep effective capacity of a reservoir, however engineers should also consider the influences of the methods on the flood disaster, functions of water use facilities and environmental issues.This article first examines the sedimentation in reservoirs and shows how to control it and then discusses the studies about the sedimens in Siazakh Dam.Keywords: Sedimentation, Reservoir, Sediment Control, Dam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26532014 Distribution and Characterization of Thermal Springs in Northern Oman
Authors: Fahad Al Shidi, Reginald Victor
Abstract:
This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca2+ and SO2-4 ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca2+ ions.
Keywords: Alkaline springs, geothermal, Hajar Super Group, Northern Oman, ophiolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6042013 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump
Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado
Abstract:
Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.
Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11122012 Press Hardening of Tubes with Additional Interior Spray Cooling
Authors: B.-A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier
Abstract:
Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.Keywords: 22MnB5, hollow profiles, press hardening, tubes, water-air spray cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21082011 Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method
Authors: Murad A, Baker H, Mahmoud S, Gabr A
Abstract:
The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.Keywords: groundwater, shallow seismic method, United Arab Emirates
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14942010 Engineering Study and Equipment Design: Effects of Temperature and design variables on Yield of a Multi-Stage Distillator
Authors: A.Diaf, Z.Tigrine, H. Aburideh, D.Tassalit , F.Alaoui, B .Abbad
Abstract:
The distillation process in the general sense is a relatively simple technique from the standpoints of its principles. When dedicating distillation to water treatment and specifically producing fresh water from sea, ocean and/ briny waters it is interesting to notice that distillation has no limitations or domains of applicability regarding the nature or the type of the feedstock water. This is not the case however for other techniques that are technologically quite complex, necessitate bigger capital investments and are limited in their usability. In a previous paper we have explored some of the effects of temperature on yield. In this paper, we continue building onto that knowledge base and focus on the effects of several additional engineering and design variables on productivity.Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17992009 Finite Difference Method of the Seismic Analysis of Earth Dam
Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali
Abstract:
Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.Keywords: Earthquake, numerical analysis, FLAC2D, displacement, Embankment Dam, pore water pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24522008 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites
Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying
Abstract:
Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.
Keywords: Butene, catalytic cracking, HZSM-5, modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31842007 Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge
Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu
Abstract:
Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster.Keywords: Aluminum, Acidification, Sludge, Recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17162006 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators
Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan
Abstract:
Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.
Keywords: Turbulators, heat exchanger, nanofluids, heat transfer enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16592005 Effect of Domestic Treated Wastewater use on Three Varieties of Amaranth (Amaranthus spp.) under Semi Arid Conditions
Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Sarr F, Hirich A.
Abstract:
An experiment was implemented in a filed in the south of Morocco to evaluate the effects of domestic treated wastewater use for irrigation of amaranth crop under semi-arid conditions. Three varieties (A0020, A0057 & A211) were tested and irrigated using domestic treated wastewater EC1 (0,92 dS/m) as control, EC3 (3dS/m) and EC6 (6dS/m) obtained by adding sea water. In term of growth, an increase of the EC level of applied irrigation water reduced significantly the plant-s height, leaf area, fresh and dry weight measured at vegetative, flowering and maturity stage for all varieties. Even with the application of the EC6, yields were relatively higher in comparison with the once obtained in normal cultivation conditions. A significant accumulation of nitrate, chloride and sodium in soil layers during the crop cycle was noted. The use of treated waste water for its irrigation is proved to be possible. The variety A211 had showed to be less sensitive to salinity stress and it could be more promising its introduction to study area.
Keywords: Amaranth, salinity, semi-arid, treated waste water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20182004 Recovery of Acetonitrile from Aqueous Solutions by Extractive Distillation–Effect of Entrainer
Authors: Aleksandra Yu. Sazonova, Valentina M. Raeva
Abstract:
The aim of this work was to apply extractive distillation for acetonitrile removal from water solutions, to validate thermodynamic criterion based on excess Gibbs energy to entrainer selection process for acetonitrile – water mixture separation and show its potential efficiency at isothermal conditions as well as at isobaric (conditions of real distillation process), to simulate and analyze an extractive distillation process with chosen entrainers: optimize amount of trays and feeds, entrainer/original mixture and reflux ratios. Equimolar composition of the feed stream was chosen for the process, comparison of the energy consumptions was carried out. Glycerol was suggested as the most energetically and ecologically suitable entrainer.
Keywords: Acetonitrile, entrainer, extractive distillation, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71942003 A Concept of Rational Water Management at Local Utilities – The Use of RO for Water Supply and Wastewater Treatment/Reuse
Authors: N. Matveev, A. Pervov
Abstract:
Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.
Keywords: Reverse osmosis, stormwater treatment, openchannel module, wastewater reuse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19632002 Investigation of Steady State Infiltration Rate for Different Head Condition
Authors: Nour Aljafari, Mariam, S. Maani, Serter Atabay, Tarig Ali, Said Daker, Lara Daher, Hamad Bukhammas, Mohammed Abou Shakra
Abstract:
This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions.
Keywords: Infiltration rate, moisture content, grass type, organic content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17122001 Frequency and Amplitude Measurement of a Vibrating Object in Water Using Ultrasonic Speckle Technique
Authors: Hongmao Zhu, Jun Chu, Lei Shen, Zhihua Luo
Abstract:
The principle of frequency and amplitude measurement of a vibrating object in water using ultrasonic speckle technique is presented in this paper. Compared with other traditional techniques, the ultrasonic speckle technique can be applied to vibration measurement of a nonmetal object with rough surface in water in a noncontact way. The relationship between speckle movement and object movement was analyzed. Based on this study, an ultrasonic speckle measurement system was set up. With this system the frequency and amplitude of an underwater vibrating cantilever beam was detected. The result shows that the experimental data is in good agreement with the calibrating data.
Keywords: Frequency, Amplitude, Vibration measurement, Ultrasonic speckle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15072000 An Assessment of Water Pollution of the Beshar River Aquatic Ecosystems
Authors: Amir Eghbal Khajeh Rahimi, Fardin Boustani, Omid Tabiee, Masoud Hashemi
Abstract:
The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of pollutants activities on the water quality of the Beshar river and its aquatic ecosystems. This river is approximately 190 km in length and situated at the geographical positions of 51° 20´ to 51° 48´ E and 30° 18´ to 30° 52´ N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. Therefore, to determine the impact of human activities on the Beshar River, the most important water quality parameters such as pH, dissolve oxygen (DO), Biological Oxygen Demand (BOD5), Total Dissolve Solids (TDS), Nitrates (NO3-N) and Phosphates (PO4) were estimated at the five stations. As the results show, the most important pollution index parameters such as BOD5, NO3 and PO4 increase and DO and pH decrease according to human activities (P<0.05). However, due to pollutant degradation and dilution, pollution index parameters improve downstream sampling stations.
Keywords: Human activities, Water pollution, Beshar River, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19201999 Necessity of Risk Management of Various Industry-Associated Pollutants(Case Study of Gavkhoni Wetland Ecosystem)
Authors: Hekmatpanah, M.
Abstract:
Since the beginning of human history, human activities have caused many changes in the environment. Today, a particular attention should be paid to gaining knowledge about water quality of wetlands which are pristine natural environments rich in genetic reserves. If qualitative conditions of industrial areas (in terms of both physicochemical and biological conditions) are not addressed properly, they could cause disruption in natural ecosystems, especially in rivers. With regards to the quality of water resources, determination of pollutant sources plays a pivotal role in engineering projects as well as designing water quality control systems. Thus, using different methods such as flow duration curves, dischargepollution load model and frequency analysis by HYFA software package, risk of various industrial pollutants in international and ecologically important Gavkhoni wetland is analyzed. In this study, a station located at Varzaneh City is used as the last station on Zayanderud River, from where the river water is discharged into the wetland. Results showed that elements- concentrations often exceeded the allowed level and river water can endanger regional ecosystem. In addition, if the river discharge is managed on Q25 basis, this basis can lower concentrations of elements, keeping them within the normal level.Keywords: Pollutants Risk, Industry, Flow Discharge, Management, Gavkhoni Wetland
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12461998 Ageing Deterioration of Silicone Rubber Polymer Insulator under Salt Water Dip Wheel Test
Authors: J. Grasaesom, S.Thong-om, W. Payakcho, B. Marungsri
Abstract:
This paper presents the experimental results of silicone rubber polymer insulators for 22 kV systems under salt water dip wheel test based on IEC 62217. Straight shed silicone rubber polymer insulators having leakage distance 685 mm were tested continuously 30,000 cycles. One test cycle includes 4 positions, energized, de-energized, salt water dip and deenergized, respectively. For one test cycle, each test specimen remains stationary for about 40 second in each position and takes 8 second for rotate to next position. By visual observation, sever surface erosion was observed on the trunk near the energized end of tested specimen. Puncture was observed on the upper shed near the energized end. In addition, decreasing in hydrophobicity and increasing in hardness were measured on tested specimen comparing with new specimen. Furthermore, chemical analysis by ATR-FTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen.
Keywords: ageing of silicone rubber, salt water dip wheeltest, silicone rubber polymer insulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26511997 Oxygen Transfer by Multiple Inclined Plunging Water Jets
Authors: Surinder Deswal
Abstract:
There has been a growing interest in the oxygenation by plunging water jets in the last few years due to their inherent advantages, like energy-efficient, low operation cost, etc. Though a lot of work has been reported on the oxygen-transfer by single plunging water jets but very few studies have been carried out using multiple plunging jets. In this paper, volumetric oxygen-transfer coefficient and oxygen-transfer efficiency has been studied experimentally for multiple inclined plunging jets (having jet plunge angle of 60 0 ) in a pool of water for different configurations, in terms of varying number of jets and jet diameters. This research suggests that the volumetric oxygen-transfer coefficient and oxygentransfer efficiency of the multiple inclined plunging jets for air-water system are significantly higher than those of a single vertical as well as inclined plunging jet for same flow area and other similar conditions. The study also reveals that the oxygen-transfer increase with increase in number of multiple jets under similar conditions, which will be most advantageous and energy-efficient in practical situations when large volumes of wastewaters are to be treated. A relationship between volumetric oxygen-transfer coefficient and jet parameters is also proposed. The suggested relationship predicts the volumetric oxygen-transfer coefficient for multiple inclined plunging jet(s) within a scatter of ±15 percent. The relationship will be quite useful in scale-up and in deciding optimum configuration of multiple inclined plunging jet aeration system.Keywords: Multiple inclined plunging jets, jet plunge angle, volumetric oxygen-transfer coefficient, oxygen-transfer efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701996 Flow Duration Curves and Recession Curves Connection through a Mathematical Link
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.
Keywords: Chronological sequence of discharges, recession curves, streamflow duration curves, water concession.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5951995 Development of a Real-Time Energy Models for Photovoltaic Water Pumping System
Authors: Ammar Mahjoubi, Ridha Fethi Mechlouch, Belgacem Mahdhaoui, Ammar Ben Brahim
Abstract:
This purpose of this paper is to develop and validate a model to accurately predict the cell temperature of a PV module that adapts to various mounting configurations, mounting locations, and climates while only requiring readily available data from the module manufacturer. Results from this model are also compared to results from published cell temperature models. The models were used to predict real-time performance from a PV water pumping systems in the desert of Medenine, south of Tunisia using 60-min intervals of measured performance data during one complete year. Statistical analysis of the predicted results and measured data highlight possible sources of errors and the limitations and/or adequacy of existing models, to describe the temperature and efficiency of PV-cells and consequently, the accuracy of performance of PV water pumping systems prediction models.Keywords: Temperature of a photovoltaic module, Predicted models, PV water pumping systems efficiency, Simulation, Desert of southern Tunisia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511994 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture
Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain
Abstract:
Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.
Keywords: Oil-spill, graphene, oil-water separation, nanocomposite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8461993 Producing New Composite Materials by Using Tragacanth and Waste Ash
Authors: Yasar Bicer, Serif Yilmaz
Abstract:
In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.Keywords: Fly ash, tragacanth, cement, composite material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772