Search results for: Assembly feature
509 Learning of Class Membership Values by Ellipsoidal Decision Regions
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.
Keywords: Ellipsoid, genetic algorithm, decision regions, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428508 Presenting a Combinatorial Feature to Estimate Depth of Anesthesia
Authors: Toktam Zoughi, Reza Boostani
Abstract:
Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.Keywords: Depth of anesthesia, EEG, BIS, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853507 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs
Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa
Abstract:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779506 Extraction of Significant Phrases from Text
Authors: Yuan J. Lui
Abstract:
Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.
Keywords: classification, keyphrase extraction, machine learning, summarization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051505 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System
Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya
Abstract:
The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.
Keywords: Inter line power flow controller, Transmission Pricing, Unified power flow controller, cost allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685504 Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads
Authors: Al-Kashif M., Abdel-Mooty M., Fahmy E., Abou Zeid M., Haroun M.
Abstract:
Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.Keywords: Autoclaved Aerated Concrete, Concrete Sandwich Panels, Finite Element Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3079503 Bearing Fault Feature Extraction by Recurrence Quantification Analysis
Authors: V. G. Rajesh, M. V. Rajesh
Abstract:
In rotating machinery one of the critical components that is prone to premature failure is the rolling bearing. Consequently, early warning of an imminent bearing failure is much critical to the safety and reliability of any high speed rotating machines. This study is concerned with the application of Recurrence Quantification Analysis (RQA) in fault detection of rolling element bearings in rotating machinery. Based on the results from this study it is reported that the RQA variable, percent determinism, is sensitive to the type of fault investigated and therefore can provide useful information on bearing damage in rolling element bearings.Keywords: Bearing fault detection, machine vibrations, nonlinear time series analysis, recurrence quantification analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857502 Design of Compliant Mechanism Based Microgripper with Three Finger Using Topology Optimization
Authors: R. Bharanidaran, B. T. Ramesh
Abstract:
High precision in motion is required to manipulate the micro objects in precision industries for micro assembly, cell manipulation etc. Precision manipulation is achieved based on the appropriate mechanism design of micro devices such as microgrippers. Design of a compliant based mechanism is the better option to achieve a highly precised and controlled motion. This research article highlights the method of designing a compliant based three fingered microgripper suitable for holding asymmetric objects. Topological optimization technique, a systematic method is implemented in this research work to arrive a topologically optimized design of the mechanism needed to perform the required micro motion of the gripper. Optimization technique has a drawback of generating senseless regions such as node to node connectivity and staircase effect at the boundaries. Hence, it is required to have post processing of the design to make it manufacturable. To reduce the effect of post processing stage and to preserve the edges of the image, a cubic spline interpolation technique is introduced in the MATLAB program. Structural performance of the topologically developed mechanism design is tested using finite element method (FEM) software. Further the microgripper structure is examined to find its fatigue life and vibration characteristics.
Keywords: Compliant mechanism, Cubic spline interpolation, FEM, Topology optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3579501 The Overload Behaviour of Reinforced Concrete Flexural Members
Authors: Angelo Thurairajah
Abstract:
Sufficient ultimate deformation is necessary to demonstrate the member ductility, which is dependent on the section and the material ductility. The concrete cracking phase of softening prior to the plastic hinge formation is an essential feature as well. The nature of the overload behaviour is studied using the order of the ultimate deflection. The ultimate deflection is primarily dependent on the slenderness (span to depth ratio), the ductility of the reinforcing steel, the degree of moment redistribution, the type of loading, and the support conditions. The ultimate deflection and the degree of moment redistribution from the analytical study are in good agreement with the experimental results and the moment redistribution provisions of the Australian Standards AS3600 Concrete Structures Code.
Keywords: Ductility, softening, ultimate deflection, overload behaviour, moment redistribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396500 Soft Computing based Retrieval System for Medical Applications
Authors: Pardeep Singh, Sanjay Sharma
Abstract:
With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.Keywords: CBIR, GA, Rough sets, CBMIR, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732499 Sorting Primitives and Genome Rearrangementin Bioinformatics: A Unified Perspective
Authors: Swapnoneel Roy, Minhazur Rahman, Ashok Kumar Thakur
Abstract:
Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and proteinprotein interactions, and the modeling of evolution. Various global rearrangements of permutations, such as reversals and transpositions,have recently become of interest because of their applications in computational molecular biology. A reversal is an operation that reverses the order of a substring of a permutation. A transposition is an operation that swaps two adjacent substrings of a permutation. The problem of determining the smallest number of reversals required to transform a given permutation into the identity permutation is called sorting by reversals. Similar problems can be defined for transpositions and other global rearrangements. In this work we perform a study about some genome rearrangement primitives. We show how a genome is modelled by a permutation, introduce some of the existing primitives and the lower and upper bounds on them. We then provide a comparison of the introduced primitives.Keywords: Sorting Primitives, Genome Rearrangements, Transpositions, Block Interchanges, Strip Exchanges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161498 Using Fractional Factorial Designs for Variable Importance in Random Forest Models
Authors: Ewa. M. Sztendur, Neil T. Diamond
Abstract:
Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.
Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997497 Use of Ecommerce Websites in Developing Countries
Authors: Vera Pujani
Abstract:
The purpose of this study is to investiagte the use of the ecommerce website in Indonesia as a developing country. The ecommerce website has been identified having the significant impact on business activities in particular solving the geographical problem for islanded countries likes Indonesia. Again, website is identified as a crucial marketing tool. This study presents the effect of quality and features on the use and user satisfaction employing ecommerce websites. Survey method for 115 undergraduate students of Management Department in Andalas University who are attending Management Information Systems (SIM) class have been undertaken. The data obtained is analyzed using Structural Equation Modeling (SEM) using SmartPLS program. This result found that quality of system and information, feature as well satisfaction influencing the use ecommerce website in Indonesia contexts.Keywords: Use, Developing Country, Satisfaction, Website
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910496 Atmospheric Plasma Innovative Roll-to-Roll Machine for Continuous Materials
Abstract:
Atmospheric plasma is emerging as a promising technology for many industrial sectors, because of its ecological and economic advantages respect to the traditional production processes. For textile industry, atmospheric plasma is becoming a valid alternative to the conventional wet processes, but the plasma machines realized so far do not allow the treatment of fibrous mechanically weak material. Novel atmospheric plasma machine for industrial applications, developed by VenetoNanotech SCpA in collaboration with Italian producer of corona equipment ME.RO SpA is presented. The main feature of this pre-industrial scale machine is the possibility of the inline plasma treatment of delicate fibrous substrates such as fibre sleeves, for example wool tops, cotton fibres, polymeric tows, mineral fibers and so on, avoiding burnings and disruption of the faint materials.Keywords: Atmospheric plasma, industrial machine, fibrous materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878495 Buckling of Plates on Foundation with Different Types of Sides Support
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied.
The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length.
To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed.
Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition.
The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work.
The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.
Keywords: Buckling, Finite Strip, Different Sides Support, Plates on Foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147494 Collaborative Professional Education for e-Teaching in Networked Schools
Authors: Ken Stevens
Abstract:
Networked schools have become a feature of education systems in countries that seek to provide learning opportunities in schools located beyond major centres of population. The internet and e-learning have facilitated the development of virtual educational structures that complement traditional schools, encouraging collaborative teaching and learning to proceed. In rural New Zealand and in the Atlantic Canadian province of Newfoundland and Labrador, e-learning is able to provide new ways of organizing teaching, learning and the management of educational opportunities. However, the future of e-teaching and e-learning in networked schools depends on the development of professional education programs that prepare teachers for collaborative teaching and learning environments in which both virtual and traditional face to face instruction co-exist.Keywords: Advanced Placement, Cybercells, Extranet, Intranet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410493 A New Face Recognition Method using PCA, LDA and Neural Network
Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani
Abstract:
In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213492 The Labeled Classification and its Application
Authors: M. Nemissi, H. Seridi, H. Akdag
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410491 Changes in EEG and HRV during Event-Related Attention
Authors: Sun K. Yoo, Chung K. Lee
Abstract:
Determination of attentional status is important because working performance and an unexpected accident is highly related with the attention. The autonomic nervous and the central nervous systems can reflect the changes in person’s attentional status. Reduced number of suitable pysiological parameters among autonomic and central nervous systems related signal parameters will be critical in optimum design of attentional devices. In this paper, we analyze the EEG (Electroencephalography) and HRV (Heart Rate Variability) signals to demonstrate the effective relation with brain signal and cardiovascular signal during event-related attention, which will be later used in selecting the minimum set of attentional parameters. Time and frequency domain parameters from HRV signal and frequency domain parameters from EEG signal are used as input to the optimum feature parameters selector.
Keywords: EEG, HRV, attentional status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790490 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles
Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou
Abstract:
The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.
Keywords: Fault detection, feature selection, machine learning, predictive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781489 Vehicle Position Estimation for Driver Assistance System
Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park
Abstract:
We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640488 A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer
Authors: Naim Suleyman Ting, Yakup Sahin, Ismail Aksoy
Abstract:
This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model.
Keywords: Direct power transfer, boost converter, zero-voltage transition, zero-current transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835487 ZVZCT PWM Boost DC-DC Converter
Authors: İsmail Aksoy, Hacı Bodur, Nihan Altıntas
Abstract:
This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.Keywords: Active snubber cell, boost converter, zero current switching, zero voltage switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498486 Analysis of Sonogram Images of Thyroid Gland Based on Wavelet Transform
Authors: M. Bastanfard, B. Jalaeian, S. Jafari
Abstract:
Sonogram images of normal and lymphocyte thyroid tissues have considerable overlap which makes it difficult to interpret and distinguish. Classification from sonogram images of thyroid gland is tackled in semiautomatic way. While making manual diagnosis from images, some relevant information need not to be recognized by human visual system. Quantitative image analysis could be helpful to manual diagnostic process so far done by physician. Two classes are considered: normal tissue and chronic lymphocyte thyroid (Hashimoto's Thyroid). Data structure is analyzed using K-nearest-neighbors classification. This paper is mentioned that unlike the wavelet sub bands' energy, histograms and Haralick features are not appropriate to distinguish between normal tissue and Hashimoto's thyroid.Keywords: Sonogram, thyroid, Haralick feature, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321485 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition
Authors: H. El Fadili, K. Zenkouar, H. Qjidaa
Abstract:
This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663484 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons
Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia
Abstract:
Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.
Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558483 Estimation of the Bit Side Force by Using Artificial Neural Network
Authors: Mohammad Heidari
Abstract:
Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978482 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling
Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr
Abstract:
For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.Keywords: Railway ballast, coal fouling, discrete element modelling, discrete element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650481 Echo State Networks for Arabic Phoneme Recognition
Authors: Nadia Hmad, Tony Allen
Abstract:
This paper presents an ESN-based Arabic phoneme recognition system trained with supervised, forced and combined supervised/forced supervised learning algorithms. Mel-Frequency Cepstrum Coefficients (MFCCs) and Linear Predictive Code (LPC) techniques are used and compared as the input feature extraction technique. The system is evaluated using 6 speakers from the King Abdulaziz Arabic Phonetics Database (KAPD) for Saudi Arabia dialectic and 34 speakers from the Center for Spoken Language Understanding (CSLU2002) database of speakers with different dialectics from 12 Arabic countries. Results for the KAPD and CSLU2002 Arabic databases show phoneme recognition performances of 72.31% and 38.20% respectively.
Keywords: Arabic phonemes recognition, echo state networks (ESNs), neural networks (NNs), supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409480 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.
Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446