Search results for: wireless sensors.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1186

Search results for: wireless sensors.

586 Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS

Authors: K. Tunde Olagunju, C. Scott Allen, F.D. (Freek) van der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon – substrate combination, Sentinel-2, WorldView-3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
585 Design, Modeling and Fabrication of a Tactile Sensor and Display System for Application in Laparoscopic Surgery

Authors: M. Ramezanifard, J. Dargahi, S. Najarian, N. Narayanan

Abstract:

One of the major disadvantages of the minimally invasive surgery (MIS) is the lack of tactile feedback to the surgeon. In order to identify and avoid any damage to the grasped complex tissue by endoscopic graspers, it is important to measure the local softness of tissue during MIS. One way to display the measured softness to the surgeon is a graphical method. In this paper, a new tactile sensor has been reported. The tactile sensor consists of an array of four softness sensors, which are integrated into the jaws of a modified commercial endoscopic grasper. Each individual softness sensor consists of two piezoelectric polymer Polyvinylidene Fluoride (PVDF) films, which are positioned below a rigid and a compliant cylinder. The compliant cylinder is fabricated using a micro molding technique. The combination of output voltages from PVDF films is used to determine the softness of the grasped object. The theoretical analysis of the sensor is also presented. A method has been developed with the aim of reproducing the tactile softness to the surgeon by using a graphical method. In this approach, the proposed system, including the interfacing and the data acquisition card, receives signals from the array of softness sensors. After the signals are processed, the tactile information is displayed by means of a color coding method. It is shown that the degrees of softness of the grasped objects/tissues can be visually differentiated and displayed on a monitor.

Keywords: Minimally invasive surgery, Robotic surgery, Sensor, Softness, Tactile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
584 X-Ray Intensity Measurement Using Frequency Output Sensor for Computed Tomography

Authors: R. M. Siddiqui, D. Z. Moghaddam, T. R. Turlapati, S. H. Khan, I. Ul Ahad

Abstract:

Quality of 2D and 3D cross-sectional images produce by Computed Tomography primarily depend upon the degree of precision of primary and secondary X-Ray intensity detection. Traditional method of primary intensity detection is apt to errors. Recently the X-Ray intensity measurement system along with smart X-Ray sensors is developed by our group which is able to detect primary X-Ray intensity unerringly. In this study a new smart X-Ray sensor is developed using Light-to-Frequency converter TSL230 from Texas Instruments which has numerous advantages in terms of noiseless data acquisition and transmission. TSL230 construction is based on a silicon photodiode which converts incoming X-Ray radiation into the proportional current signal. A current to frequency converter is attached to this photodiode on a single monolithic CMOS integrated circuit which provides proportional frequency count to incoming current signal in the form of the pulse train. The frequency count is delivered to the center of PICDEM FS USB board with PIC18F4550 microcontroller mounted on it. With highly compact electronic hardware, this Demo Board efficiently read the smart sensor output data. The frequency output approaches overcome nonlinear behavior of sensors with analog output thus un-attenuated X-Ray intensities could be measured precisely and better normalization could be acquired in order to attain high resolution.

Keywords: Computed tomography, detector technology, X-Ray intensity measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
583 Survey of Key Management Algorithms in WiMAX

Authors: R. Chithra, B. Kalavathi, J. Christy Lavanya

Abstract:

WiMAX is a telecommunications technology and it is specified by the Institute of Electrical and Electronics Engineers Inc., as the IEEE 802.16 standard. The goal of this technology is to provide a wireless data over long distances in a variety of ways. IEEE 802.16 is a recent standard for mobile communication. In this paper, we provide an overview of various key management algorithms to provide security for WiMAX.

Keywords: Broadcast, Rekeying, Scalability, Secrecy, Unicast, WiMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
582 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: Energy-efficient buildings, Hierarchical model predictive control, Microgrid power flow optimization, Price-optimal building climate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
581 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture

Authors: Charbel Geryes Aoun, Loic Lagadec

Abstract:

A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g. Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple-views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.

Keywords: Smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257
580 Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network

Authors: K. Rajasekaran, Kannan Balasubramanian

Abstract:

A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in data delivery. Therefore, multipath routing protocols are preferred for WSN. Distributing the traffic among multiple paths increases the network lifetime. We propose a scheme, for the data to be transmitted through a dominant path to save energy. In order to obtain a high delivery ratio, a basic route reconstruction protocol is utilized to reconstruct the path whenever a failure is detected. A basic reconstruction routing (BRR) algorithm is proposed, in which a node can leap over path failure by using the already existing routing information from its neighbourhood while the composed data is transmitted from the source to the sink. In order to save the energy and attain high data delivery ratio, data is transmitted along a multiple path, which is achieved by BRR algorithm whenever a failure is detected. Further, the analysis of how the proposed protocol overcomes the drawback of the existing protocols is presented. The performance of our protocol is compared to AOMDV and energy efficient node-disjoint multipath routing protocol (EENDMRP). The system is implemented using NS-2.34. The simulation results show that the proposed protocol has high delivery ratio with low energy consumption.

Keywords: Multipath routing, WSN, energy efficient routing, alternate route, assured data delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
579 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors

Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar

Abstract:

Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.

Keywords: Electrophoretic deposition, graphene oxide, electrical conductivity, electro-optical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
578 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem

Abstract:

A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G Technology, array antenna, microstrip, millimeter wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
577 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292
576 The Security Trade-Offs in Resource Constrained Nodes for IoT Application

Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve

Abstract:

The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.

Keywords: Internet of Things, IEEE 802.15.4, security cost evaluation, wireless sensor network, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
575 Factors Affecting M-Government Deployment and Adoption

Authors: Saif Obaid Alkaabi, Nabil Ayad

Abstract:

Governments constantly seek to offer faster, more secure, efficient and effective services for their citizens. Recent changes and developments to communication services and technologies, mainly due the Internet, have led to immense improvements in the way governments of advanced countries carry out their interior operations Therefore, advances in e-government services have been broadly adopted and used in various developed countries, as well as being adapted to developing countries. The implementation of advances depends on the utilization of the most innovative structures of data techniques, mainly in web dependent applications, to enhance the main functions of governments. These functions, in turn, have spread to mobile and wireless techniques, generating a new advanced direction called m-government. This paper discusses a selection of available m-government applications and several business modules and frameworks in various fields. Practically, the m-government models, techniques and methods have become the improved version of e-government. M-government offers the potential for applications which will work better, providing citizens with services utilizing mobile communication and data models incorporating several government entities. Developing countries can benefit greatly from this innovation due to the fact that a large percentage of their population is young and can adapt to new technology and to the fact that mobile computing devices are more affordable. The use of models of mobile transactions encourages effective participation through the use of mobile portals by businesses, various organizations, and individual citizens. Although the application of m-government has great potential, it does have major limitations. The limitations include: the implementation of wireless networks and relative communications, the encouragement of mobile diffusion, the administration of complicated tasks concerning the protection of security (including the ability to offer privacy for information), and the management of the legal issues concerning mobile applications and the utilization of services.

Keywords: E-government, m-government, system dependability, system security, trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
574 Synthesis and Applications of Heteronanostructured ZnO Nanowires Array

Authors: Minsu Seol, Youngjo Tak, Guenjai Kwak, Kijung Yong

Abstract:

ZnO heteronanostructured nanowires arrays have been fabricated by low temperature solution method. Various heterostructures were synthesized including CdS/ZnO, CdSe/CdS/ZnO nanowires and Co3O4/ZnO, ZnO/SiC nanowires. These multifunctional heterostructure nanowires showed important applications in photocatalysts, sensors, wettability control and solar energy conversion.

Keywords: ZnO nanowires, Heterostructure nanowires, solarenergy conversion, photocatalsis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
573 Low Cost IMU \ GPS Integration Using Kalman Filtering for Land Vehicle Navigation Application

Authors: Othman Maklouf, Abdurazag Ghila, Ahmed Abdulla, Ameer Yousef

Abstract:

Land vehicle navigation system technology is a subject of great interest today. Global Positioning System (GPS) is a common choice for positioning in such systems. However, GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation is the implementation of inertial sensors to determine the position and orientation of a vehicle. As such, inertial navigation has unbounded error growth since the error accumulates at each step. Thus in order to contain these errors some form of external aiding is required. The availability of low cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop Inertial Navigation System (INS) using an inertial measurement unit (IMU), in conjunction with GPS to fulfill the demands of such systems. Typically IMU’s are very expensive systems; however this INS will use “low cost” components. Unfortunately with low cost also comes low performance and is the main reason for the inclusion of GPS and Kalman filtering into the system. The aim of this paper is to develop a GPS/MEMS INS integrated system, which is able to provide a navigation solution with accuracy levels appropriate for land vehicle navigation. The primary piece of equipment used was a MEMS-based Crista IMU (from Cloud Cap Technology Inc.) and a Garmin GPS 18 PC (which is both a receiver and antenna). The integration of GPS with INS can be implemented using a Kalman filter in loosely coupled mode. In this integration mode the INS error states, together with any navigation state (position, velocity, and attitude) and other unknown parameters of interest, are estimated using GPS measurements. All important equations regarding navigation are presented along with discussion.

Keywords: GPS, IMU, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7533
572 Performance Evaluation of GPS \ INS Main Integration Approach

Authors: Othman Maklouf, Ahmed Adwaib

Abstract:

This paper introduces a comparative study between the main GPS\INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.

Keywords: GPS, INS, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
571 Autonomous Robots- Visual Perception in Underground Terrains Using Statistical Region Merging

Authors: Omowunmi E. Isafiade, Isaac O. Osunmakinde, Antoine B. Bagula

Abstract:

Robots- visual perception is a field that is gaining increasing attention from researchers. This is partly due to emerging trends in the commercial availability of 3D scanning systems or devices that produce a high information accuracy level for a variety of applications. In the history of mining, the mortality rate of mine workers has been alarming and robots exhibit a great deal of potentials to tackle safety issues in mines. However, an effective vision system is crucial to safe autonomous navigation in underground terrains. This work investigates robots- perception in underground terrains (mines and tunnels) using statistical region merging (SRM) model. SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. An investigation is also conducted on a stream of underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB) and depth images of 640 x 480 resolution at 30 frames per second. Integrating the depth information to drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluation, reveal that a good drivable region can be detected in dynamic underground terrains.

Keywords: Drivable Region Detection, Kinect Sensor, Robots' Perception, SRM, Underground Terrains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
570 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

Authors: V. V. Reddy, N. V. S. N. Sarma

Abstract:

A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x- axis, yaxis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel polyfractal antenna are demonstrated.

Keywords: Circular polarization, Fractal, Koch, Minkowski.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
569 Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria

Authors: C. I. Abiodun, S. O. Azi, J. S. Ojo, P. Akinyemi

Abstract:

The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.

Keywords: Break-point distances, path loss models, path loss exponent, received signal strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
568 University Students Sport’s Activities Assessment in Harsh Weather Conditions

Authors: Ammar S. M. Moohialdin, Bambang T. Suhariadi, Mohsin Siddiqui

Abstract:

This paper addresses the application of physiological status monitoring (PSM) for assessing the impact of harsh weather conditions on sports activities in universities in Saudi Arabia. Real sports measurement was conducted during sports activities such that the physiological status (HR and BR) of five students were continuously monitored by using Zephyr BioHarnessTM 3.0 sensors in order to identify the physiological bonds and zones. These bonds and zones were employed as indicators of the associated physiological risks of the performed sports activities. Furthermore, a short yes/no questionnaire was applied to collect information on participants’ health conditions and opinions of the applied PSM sensors. The results show the absence of a warning system as a protective aid for the hazardous levels of extremely hot and humid weather conditions that may cause dangerous and fatal circumstances. The applied formulas for estimating maximum HR provides accurate estimations for Maximum Heart Rate (HRmax). The physiological results reveal that the performed activities by the participants are considered the highest category (90–100%) in terms of activity intensity. This category is associated with higher HR, BR and physiological risks including losing the ability to control human body behaviors. Therefore, there is a need for immediate intervention actions to reduce the intensity of the performed activities to safer zones. The outcomes of this study assist the safety improvement of sports activities inside universities and athletes performing their sports activities. To the best of our knowledge, this is the first paper to represent a special case of the application of PSM technology for assessing sports activities in universities considering the impacts of harsh weather conditions on students’ health and safety.

Keywords: PSM, heart rate, HR, breathing rate, BR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
567 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: Channel estimation, inter-cell interference, pilot contamination attacks, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
566 Performance Evaluation of Bluetooth Links in the Presence of Specific Types of Interference

Authors: Radosveta Sokullu, Engin Karatepe

Abstract:

In the last couple of years Bluetooth has gained a large share in the market of home and personal appliances. It is now a well established technology a short range supplement to the wireless world of 802.11. The two main trends of research that have sprung from these developments are directed towards the coexistence and performance issues of Bluetooth and 802.11 as well as the co-existence in the very short range of multiple Bluetooth devices. Our work aims at thoroughly investigating different aspects of co-channel interference and effects of transmission power, distance and 802.11 interference on Bluetooth connections.

Keywords: Bluetooth, co-channel interference, 802.11, performance analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
565 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments

Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo

Abstract:

In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.

Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
564 Web-Based Control and Notification for Home Automation Alarm Systems

Authors: Helder Adão, Rui Antunes, Frederico Grilo

Abstract:

This paper describes the project and development of a very low-cost and small electronic prototype, especially designed for monitoring and controlling existing home automation alarm systems (intruder, smoke, gas, flood, etc.), via TCP/IP, with a typical web browser. Its use will allow home owners to be immediately alerted and aware when an alarm event occurs, and being also able to interact with their home automation alarm system, disarming, arming and watching event alerts, with a personal wireless Wi-Fi PDA or smartphone logged on to a dedicated predefined web page, and using also a PC or Laptop.

Keywords: Alarm Systems, Home Automation, Web-Server, TCP/IP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3201
563 Performance Evaluation of 2×2 Switched Beam Antennas with Null Locating for Wireless Mesh Networks

Authors: S. Pradittara, M. Uthansakul, P. Uthansakul

Abstract:

A concept of switched beam antennas consisting of 2×2 rectangular array spaced by λ/4 accompanied with a null locating has been proposed in the previous work. In this letter, the performance evaluations of its prototype are presented. The benefits of using proposed system have been clearly measured in term of signal quality, throughput and delays. Also, the impact of position shift which mesh router is not located on the expected beam direction has also been investigated.

Keywords: Antenna array, Beamforming, Null steering, WMNs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
562 Digital Predistorter with Pipelined Architecture Using CORDIC Processors

Authors: Kyunghoon Kim, Sungjoon Shim, Jun Tae Kim, Jong Tae Kim

Abstract:

In a wireless communication system, a predistorter(PD) is often employed to alleviate nonlinear distortions due to operating a power amplifier near saturation, thereby improving the system performance and reducing the interference to adjacent channels. This paper presents a new adaptive polynomial digital predistorter(DPD). The proposed DPD uses Coordinate Rotation Digital Computing(CORDIC) processors and PD process by pipelined architecture. It is simpler and faster than conventional adaptive polynomial DPD. The performance of the proposed DPD is proved by MATLAB simulation.

Keywords: DPD, CORDIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
561 University Students Awareness on M-Learning

Authors: Sahilu Wendeson, Wan Fatimah Bt. Wan Ahmad, Nazleeni Samiha Bt. Haron

Abstract:

Mobile learning (M-learning) is the current technology that is becoming more popular. It uses the current mobile and wireless computing technology to complement the effectiveness of traditional learning process. The objective of this paper is presents a survey from 90 undergraduate students of Universiti Teknologi PETRONAS (UTP), to identify the students- perception on Mlearning. From the results, the students are willing to use M-learning. The acceptance level of the students is high, and the results obtained revealed that the respondents almost accept M-learning as one method of teaching and learning process and also able to improve the educational efficiency by complementing traditional learning in UTP.

Keywords: M-learning, Traditional learning, WirelessTechnology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
560 H-ARQ Techniques for Wireless Systems with Punctured Non-Binary LDPC as FEC Code

Authors: Ł. Kiedrowski, H. Gierszal, W. Hołubowicz

Abstract:

This paper presents the H-ARQ techniques comparison for OFDM systems with a new family of non-binary LDPC codes which has been developed within the EU FP7 DAVINCI project. The punctured NB-LDPC codes have been used in a simulated model of the transmission system. The link level performance has been evaluated in terms of spectral efficiency, codeword error rate and average number of retransmissions. The NB-LDPC codes can be easily and effective implemented with different methods of the retransmission needed if correct decoding of a codeword failed. Here the Optimal Symbol Selection method is proposed as a Chase Combining technique.

Keywords: H-ARQ, LDPC, Non-Binary, Punctured Codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
559 Local Algorithm for Establishing a Virtual Backbone in 3D Ad Hoc Network

Authors: Alaa E. Abdallah, M. Bsoul, Emad E. Abdallah, Ahmad Al-Khasawneh, Muath Alzghool

Abstract:

Due to the limited lifetime of the nodes in ad hoc and sensor networks, energy efficiency needs to be an important design consideration in any routing algorithm. It is known that by employing a virtual backbone in a wireless network, the efficiency of any routing scheme for the network can be improved. One common design for routing protocols in mobile ad hoc networks is to use positioning information; we use the node-s geometric locations to introduce an algorithm that can construct the virtual backbone structure locally in 3D environment. The algorithm construction has a constant time.

Keywords: Virtual backbone, dominating set, UDG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
558 Attack Defense of DAD in MANET

Authors: Sehyun Cho, Heasook Park

Abstract:

These days MANET is attracting much attention as they are expected to gratefully influence communication between wireless nodes. Along with this great strength, there is much more chance of leave and being attacked by a malicious node. Due to this reason much attention is given to the security and the private issue in MANET. A lot of research in MANET has been doing. In this paper we present the overview of MANET, the security issues of MANET, IP configuration in MANET, the solution to puzzle out the security issues and the simulation of the proposal idea. We add the method to figure out the malicious nodes so that we can prevent the attack from them. Nodes exchange the information about nodes to prevent DAD attack. We can get 30% better performance than the previous MANETConf.

Keywords: MANETConf, DAD, Attacker, DDOS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
557 Privacy Threats in RFID Group Proof Schemes

Authors: HyoungMin Ham, JooSeok Song

Abstract:

RFID tag is a small and inexpensive microchip which is capable of transmitting unique identifier through wireless network in a short distance. If a group of RFID tags can be scanned simultaneously by one reader, RFID Group proof could be generated. Group proof can be used in various applications, such as good management which is usually achieved using barcode system. A lot of RFID group proof schemes have been proposed by many researchers. In this paper, we introduce some existing group proof schemes and then analyze their vulnerabilities to the privacy. Moreover, we propose a new attack model, which threats the privacy of user by tracking tags in a group.

Keywords: grouping proof, privacy, RFID, yoking proof

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194