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Abstract—Unmanned Surface Vehicles (USVs) hold significant
value for their capacity to undertake hazardous and labor-intensive
operations over aquatic environments. Object detection tasks are
significant in these applications. Nonetheless, the efficacy of USVs in
object detection is impeded by several intrinsic challenges, including
the intricate dispersal of obstacles, reflections emanating from coastal
structures, and the presence of fog over water surfaces, among others.
To address these problems, this paper provides a fusion method for
USVs to effectively detect objects in the inland surface environment,
utilizing vision sensors and 3+1D Millimeter-wave radar. The
MMW radar is a complementary tool to vision sensors, offering
reliable environmental data. This approach involves the conversion
of the radar’s 3D point cloud into a 2D radar pseudo-image,
thereby standardizing the format for radar and vision data by
leveraging a point transformer. Furthermore, this paper proposes
the development of a multi-source object detection network, named
RV-YOLOX, which leverages radar-vision integration specifically
tailored for inland waterway environments. The performance is
evaluated on our self-recording waterways dataset. Compared with
the YOLOX network, our fusion network significantly improves
detection accuracy, especially for objects with bad light conditions.

Keywords—Inland waterways, object detection, YOLO, sensor
fusion, self-attention, deep learning.

I. INTRODUCTION

OBJECT detection in surface environments plays a crucial

role in various applications, including autonomous

vehicles, surveillance, and environmental monitoring. It

enables systems to recognize and locate objects within their

surroundings, facilitating safer navigation, enhanced security

measures, and informed decision-making. This technology

is particularly pivotal in the development and operation of

USVs, which are revolutionizing the way time-consuming and

hazardous missions are executed on water surfaces.

The deployment of USVs leverages advanced object

detection capabilities to undertake various critical tasks,

including storm forecasting [1], [2], water quality monitoring

[3] and floating waste cleaning [4], [5], among others.

Similar to the road environment, autonomous driving

technologies are crucial for ensuring safe and efficient

operation on inland waterways. Among these, reliable

environmental perception of the surrounding area is essential

for the effective functioning of USVs. Currently, researchers
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employ a variety of sensors for intelligent environmental

perception. The vision sensor is the most widely used for

object detection, allowing USVs to gather detailed information

about the surface environment. However, compared to the road

environment, pure visual perception faces more challenges in

the surface environment, as described below:

• High variance in visual size: Due to the expansive scenes

on the surface, the distance between the camera and

objects covers a wide range. When the distance from the

camera is great, the space the target occupies in RGB

images decreases significantly.

• Interference from sunlight reflection or adverse weather

conditions like fog or drizzle: The unpredictable

environment can lead to overexposure in images, resulting

in a loss of detail and a washed-out appearance.

On the other hand, 3+1D Millimeter-wave (MMW) radar

properties are complementary to vision. It is immune to

poor weather conditions and long-distance conditions and

has the ability to evaluate the target velocity and depth

using the Doppler theory. Moreover, compared with traditional

automotive radar, recently appearing 3+1D MMW radar

provides a much more dense point cloud and one extra

dimension: elevation; even though, pure radar detection has

some limitations on the surface environment.

• Limited resolution of MMW radar: Even for 3+1D

millimeter-wave (MMW) radar, the resolution remains

limited, meaning the radar may struggle to distinguish

objects that are closely spaced or have similar sizes and

shapes.

• Surface obstacles disturbance: Obstacles like the surface

of the water and buoy may absorb or scatter radar waves,

making it difficult to detect objects close to the surface.

• Environmental clutter: Objects in the environment, such

as birds and insects, can generate false returns, impacting

radar accuracy.

Multiple research efforts have demonstrated that the fusion

of camera and radar technologies can achieve more accurate

results in object detection compared to using a single type

of sensor. However, based on our review, both the fusion

of 3+1D MMW radar and camera for object detection and

the combination of data from images and radar to detect

objects in aquatic environments are topics that have not been

extensively explored. To enhance the accuracy and robustness

of object detection in surface environments using 3+1D MMW

radar and camera, this paper proposes an object detection
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network based on the fusion of these technologies. The

fusion mechanism and radar preprocessing methodology are

the primary focus of this research. In summary, this paper

contributes to the following aspects:

• A radar-camera fusion object detection network

(RV-YOLOX) for USVs in inland waterways environment

is proposed. This detection network is based on the

structure of the YOLOX network, optimizing by adding

a multi-stage attention fusion block, which is responsible

for integrating radar and vision features. This network is

evaluated by our self-recorded data.

• A radar feature image generation model based on a

neural network is proposed. This model can automatically

extract radar features and transform them into radar

feature images by BP (Back Propagation) radar semantic

information. The generated radar feature images are used

as the input of our proposed detection network.

II. RELATED WORK

A. Object Detection on Inland Waterways Environment

Recently, the interest in object detection algorithms for

the inland waterways environment has gradually increased

due to their wide range of applications in navigation,

collision avoidance, and other tasks. For pure vision

detection, Hammedi et al. [6] tested different vision-based

algorithms using a dataset of inland objects and assessed

their performance in detecting these objects. Yang et al. [7]

utilized an improved SSD (single-shot detector) model to

optimize the detection performance of small and occluded

targets. For radar-camera fusion detection, Yuwei et al. [8]

proposed a global attention fusion mechanism to improve

detection performance for small objects. However, the weather

conditions and scene contents in their evaluation datasets

are limited. To the best of our knowledge, object detection

algorithms for complex scenes remain relatively scarce.

B. Object Detection Based on Vision Sensor

The most effective and commonly utilized deep learning

models for object detection in images are convolutional neural

networks (CNNs). CNN-based detectors can be categorized

into two general types: two-stage detectors and one-stage

detectors. Two-stage detectors, such as RCNN [9] and

Fast-RCNN [10], generate a set of region proposals in the

first stage, which are then refined and classified in the second

stage. This approach usually results in higher accuracy but is

slower compared to one-stage detectors.

On the other hand, one-stage detectors, such as YOLO

(You Only Look Once) [11] and SSD [12], directly map

feature maps to bounding box regression and approach

object detection as a regression problem. This method is

faster but traditionally less accurate compared to two-stage

detectors. However, with advancements in the YOLO family,

some novel iterations have achieved accuracy comparable

to two-stage object detection methods while maintaining

faster detection speeds. Redmon et al. first introduced the

YOLO network in 2016. Subsequently, many researchers have

applied state-of-the-art (SOTA) mechanisms to YOLO. In

2017, YOLOv2 [13] incorporated anchors [14]. YOLOv3

[15] utilized Residual Net [16]. More recently, YOLOv4

[17] and YOLOv5 [18] were proposed, achieving impressive

performance and speed advantages. A year later, Ge’s team

released the YOLOX network [19]. YOLOX has five different

configurations, balancing higher accuracy or faster speed.

The mAP of YOLOX-L is comparable to YOLOv5-L on

the COCO dataset, while the inference speed of YOLOX-L

is faster than that of YOLOv5-L. However, these models

still face limitations in challenging environments, such as

adverse weather conditions. Therefore, this paper selects the

YOLOX network as the foundation for improvements based

on radar-camera fusion.

C. Object Detection Based on Radar and Image Fusion

The use of multiple sensors, such as cameras and MMW

radar, for object detection in vehicles holds significant practical

and theoretical value. MMW radar and cameras are highly

complementary, providing abundant semantic and relative

speed information to enhance the robustness and accuracy of

object detection. Early researchers adopted traditional methods

to fuse MMW radar and camera data. In 2002, Bruno et al.

[20] proposed a low-level fusion system for vehicle detection.

Bombini et al. [21] utilized radar information as a region of

interest in images to improve vehicle detection accuracy.

As deep learning technology has advanced, feature-level

fusion for radar-camera systems has garnered increasing

attention recently. For feature-level fusion, where the fusion

process occurs at a higher level of abstraction, radar feature

extraction and the fusion detection framework are crucial.

Chadwick et al. [22] were among the first to transform radar

point cloud data into images, fusing radar and vision images

using ResNet to enhance performance under challenging

scenes. Nobis et al. [23], Chang et al. [24], and Li et al. [25]

adopted a similar approach to processing radar point cloud

data. For the detection framework, John et al. [26] proposed a

framework called RVNet for combining image and radar data

using deep learning techniques. This framework effectively

merges features from both sensor types and can detect

obstacles in real time. In 2020, Kowol et al. [27] introduced

YOdar, which uses two separate branches for extracting radar

and vision features and combines them in an uncertainty-aware

manner. In 2022, Song et al. [28] proposed a fusion framework

based on YOLOv5, achieving impressive performance on their

custom datasets. However, most existing processes for radar

features are in the image dimension, overlooking the potential

of radar features in the 3D dimension. Moreover, the detection

frameworks tend to be relatively simple.

III. RADAR DATA PREPROCESSING

Given the differences between MMW radar data and

vision data, as well as the discrepancies in sensor coordinate

systems, it is crucial to standardize the data format and

spatial relationship between radar and vision data. Two

prevalent methods exist for processing this data. The first

involves directly transforming radar point clouds into radar
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Fig. 1 Schematic diagram of the radar feature generation model

pseudo-images based on radar-camera calibration information,

as demonstrated in works like [22]–[25]. The second method

maps radar information onto mask maps using neural

networks, as seen in [28]. Both approaches convert radar

features into a 2D image format, overlooking the potential of

radar’s 3D positional features. In contrast, this paper aims to

amplify the impact of radar features during the fusion process

by proposing a radar feature image generation model that fully

leverages radar’s 3D positional attributes.

A. Radar Image Generation

Self-attention networks have made significant advancements

in various fields, including natural language processing

and image classification. Recently, researchers have begun

applying self-attention networks to the processing of 3D point

clouds. Inspired by these developments, we extract radar

feature images using a self-attention network. This network

is tasked with processing MMW radar point cloud data and

transferring the extracted radar features to RGB images.

The structure of our feature-extraction self-attention

network is illustrated in Fig. 1. Five original radar features

serve as the inputs to this network, including 3D localized

features (X, Y, Z), Radar Cross Section (RCS) value,

and Doppler velocity. The network aims to extract scene

segmentation details and a radar point 3-channel feature,

which is then used for transforming into an RGB image for

sensor fusion. Consequently, this network features two output

branches: one for the backpropagation (BP) network based on

radar segmentation information, and another for outputting the

radar point cloud’s 3-channel feature. The network’s backbone

is constructed based on the original Point Transformer [29],

with the following modifications to better accommodate radar

point cloud data:

• We reduced the depth of the U-net structure because our

experiments showed that a structure that is too deep is

counterproductive for extracting radar features.

• We replaced the transition down and transition up

blocks in the original Point Transformer network with

direct down-sampling and up-sampling operations. This

adjustment is based on the observation that the low

density of radar point cloud data render the K-nearest

neighbors (KNN) and interpolation operations in the

transition blocks unnecessary for our feature-extraction

network.

After extracting radar features using our radar

feature-extraction self-attention network, we generate

2D radar images from the extracted 3-channel radar features.

These 3-channel radar features are projected onto image pixel

locations, which are calculated as follows:

XA = IAPARTR (1)

where IA is the 3 × 4 camera intrinsic matrix, TR is the

extrinsic matrix between the camera and radar, and PAR is

the 3D localized features of the radar point clouds. After

projection, the pixel values of the radar image are converted

based on the values of the 3-channel radar features. Since the

3-channel radar features have been normalized to the range

(0, 1) in the previous network, they can directly represent

the RGB value for the radar image. For areas not covered by

radar features, all channels are set to 0. However, we observed

that the density of areas containing radar points is too low.

Therefore, inspired by Chang et al. [24], we expand radar

points into radar circles with a radius of r pixels. The area

within these radar circles shares the same pixel value, with the

center of the radar circles representing the location of radar

points in pixel coordinates.

IV. DETECTION NETWORK

The deep learning object detection network with multi-data

source fusion presented in this paper is based on the YOLOX

framework [19]; hence, it is named RV-YOLOX. Given

the impressive performance of YOLOX, as evidenced by

evaluation results, we employ YOLOX as the foundation

for our fusion detection network. To effectively utilize

radar features for object detection across various scales, we

fuse image and radar features of different sizes using the

self-attention mechanism.
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Fig. 2 The RV-YOLOX network architecture

The network architecture is illustrated in Fig. 2. This

network primarily consists of three parts: the backbone,

the self-attention fusion block, and the YOLOX detection

head. The backbone is made up of two parallel structures

designed to extract features from vision images and radar

pseudo images, respectively. The self-attention fusion block

is tasked with fusing multi-scale image and radar features,

extracted by the backbone, across all channels using the

self-attention mechanism. Finally, the fusion results are passed

to the YOLOX decoupled head for the prediction of detection

bounding boxes. Further details of our detection network are

provided below:

• Backbone: Fig. 2 presents the specifics of the backbone

block. The inputs to this block are the source vision

image and the radar pseudo image produced by the

preceding radar image generation model. This block

comprises two backbone networks: CSPDarknet-vision

and CSPDarknet-radar, each tasked with extracting

features from vision and radar data, respectively. The

network outputs feature maps of multiple sizes for

subsequent multi-scale fusion. The dimensions of the

final image and radar features are 128 × 80 × 80,

256× 40× 40, and 512× 20× 20.

• Self-attention fusion block: As is widely recognized,

general environmental information surrounding objects

can be extracted from radar points. Hence, leveraging

radar points as a guide to direct vision sensors in feature

extraction can be beneficial. Our aim is to enhance

detection performance by increasing the emphasis on

radar features for small and blurred objects, which are

typically lacking in clear vision features. Moreover, for

objects that possess abundant vision information, radar

points are expected to provide a positive contribution as

well. Additionally, in contrast to data-level fusion, which

may overlook objects in regions without radar points,

our proposed fusion strategy thoroughly accounts for the

condition of areas devoid of any radar points.

The data fusion scheme employed in our detection

framework features a self-attention fusion block tasked

with re-weighting the feature maps from the vision

branch. This re-weighting is based on a 2D matrix that is

biased and iteratively adjusted according to the features

from the radar branch. Specifically, the features of radar

images are encoded into a 2D spatial attention matrix.

Subsequently, all channels of the feature maps from the

vision branch are re-weighted based on this biased 2D

spatial attention matrix. The mathematical representation

is detailed below:

Ffusion = Fimage· W1τ (W0 (σ (Fradar )))) (2)

where τ represents ReLU function and σ denotes sigmoid

function. Ffusion , Fimage and Fradar represent the fused

features, image features, and radar features respectively.

W1, W0 denotes MLP weights for assigning radar

weights to image features.

A. Loss Function
The convergence speed of the network is enhanced by

employing an appropriate loss function, similar to that used
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TABLE I
DETECTION RESULTS COMPARISON FOR RV-YOLOX AND YOLOX BASED ON OUR SURFACE RADAR-CAMERA DATASET

Model AP (100) AP .50(100) AP .75(100) AP s(100) APm(100) AP l(100)
YOLOX-S 60.3 82.9 66.4 42.7 60.3 71.3
YOLOX-L 63.6 88.3 71.9 46.5 62.5 74.3
YOLOX-M 62.4 85.2 68.9 45.2 61.7 73.7
YOLOX-X 64.9 87.2 70.9 47.5 62.9 77.7
RV-YOLOX-S 65.4 84.5 71.0 48.7 64.3 73.5
RV-YOLOX-L 72.6 92.3 79.6 58.7 68.0 80.6
RV-YOLOX-M 70.8 89.7 75.4 54.3 67.3 79.7
RV-YOLOX-X 73.4 91.2 81.2 57.3 70.8 84.6

Model AR(1) AR(10) AR(100) ARs(100) ARm(100) ARl(100)
YOLOX-S 12.2 57.3 65.5 54.1 69.2 76.7
YOLOX-L 14.4 62.1 72.3 60.0 72.6 81.5
YOLOX-M 13.2 61.6 71.2 58.7 70.9 79.3
YOLOX-X 14.8 63.2 74.4 62.1 73.1 83.3
RV-YOLOX-S 13.2 58.8 67.9 56.4 71.0 77.8
RV-YOLOX-L 16.0 68.7 78.4 67.1 73.6 86.8
RV-YOLOX-M 15.3 67.2 66.5 65.8 71.6 84.2
RV-YOLOX-X 16.4 69.4 79.3 70.4 75.4 87.5

in YOLOX. The YOLOX loss function comprises three

components: a classification branch, a confidence branch, and

a regression branch. Both the classification and confidence

branches utilize the Binary Cross Entropy (BCE) loss for

calculation, which is expressed as follows:

BCE = − log (Pt) =

{ − log(ŷ), y = 1
− log(1− ŷ), y = 0

(3)

where y = 1 represents positive sample, while y = 0 represents

negative sample. On the other hand, the regression branch is

calculated by IoU loss, which is expressed as:

IoU loss = −
∑

i∈{t,b,l,r}
ln

Intersection(xi, x̃i)

Union (xi, x̃i)
(4)

where xi denotes the ground truth area and x̃i) denotes the

prediction area.

B. Parameter Detail

In this section, we specify some key parameters used to

build this detection model. The preprocessing procedure for

vision and radar pseudo images is the same, including mosaic,

random affine, mix-up, and random augmentation. The number

of detection classes is 4, containing pier, ship, boat, and vessel.

The input size of images is 640×640. The self-attention block

contains three parallel convolution layers with the size of 1×1,

3×3, and 5×5 for multi-scale fusion. The training procedure

is epoch-based, and the total epoch size is 80. The quadratic

warm-up scheme is utilized to adjust the learning rate in the

first few iterations and the base learning rate 0.01. We adopt

the Adam optimization algorithm to process BP.

V. EXPERIMENTS

To convincingly demonstrate that our multi-sensor fusion

network surpasses the performance of pure-vision detection

networks, we conducted eight experiments. These include

testing four YOLOX networks of varying sizes (YOLOX-L,

YOLOX-M, YOLOX-S, YOLOX-X) and four improved

fusion networks corresponding to the original YOLOX

configurations. The results presented in this paper are

evaluated using standard COCO evaluation metrics, which

include average precision (AP) and average recall (AR).

A. Dataset Description

The training and evaluation dataset utilized in our study

is a portion of our self-recorded dataset [30], encompassing

recordings from creeks, canals, lakes, and rivers. These

locations were chosen to represent a variety of weather and

water conditions. The data were captured using a 3+1D MMW

radar and a monocular camera. All recorded frames include

ground truth annotations for 2D bounding boxes for vision

sensors and segmentation details for the radar sensor. The

dataset segment we used is categorized into four classes: pier,

ship, boat, and vessel, with each class annotated with both

vision and radar data. For our experiments, we used a total

of 24,000 frames, dividing them into a training set of 19,200

frames and a testing set of 4,800 frames. The distribution of

the number of objects for each class and the 3+1D MMW

radar point density is illustrated in Fig. 4.

B. Comparison and Analysis

We conducted quantitative comparisons between

RV-YOLOX models and other YOLOX networks based

on the average precision (AP) and average recall (AR)
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Fig. 3 Comparison of the detection capabilities of YOLOX and RV-YOLOX for tiny ship, dark pier, and invisible pier; photos in the top row are
RV-YOLOX detection findings, and images in the bottom row are YOLOX detection results; the comparisons demonstrate that the recommended

RV-YOLOX performs better in tiny and ambiguous targets

((a)) Number of objects per
class

((b)) 4D radar point cloud
density

Fig. 4 Dataset general overview including class distribution and point cloud
distribution

results from the standard COCO evaluation. To ensure fair

comparisons among these models, all training setups and

implementation details were kept identical. The comparison

results are summarized in Table I. According to Table I,

the performance of object detection is consistently improved

when the 3+1D MMW radar source is incorporated. This

comprehensive comparison confirms that the integration of

radar features results in tighter and more accurate bounding

box estimations. Among the eight models compared,

RV-YOLOX-X demonstrated the highest performance,

achieving an average precision of 73.4%.

We also conducted a visualization comparison between the

YOLOX network and the RV-YOLOX network, particularly

for objects in poor lighting conditions and occluded objects.

The results are displayed in Fig. 3. From Fig. 3, it is

evident that the performance of YOLOX and RV-YOLOX

is comparable when detecting objects with ample visual

information. However, in scenarios involving poor lighting

or blurred objects, the incidence of missed detections is

noticeably higher for YOLOX compared to RV-YOLOX.

This improvement with RV-YOLOX can be attributed to the

addition of radar features, such as RCS and Doppler velocity,

making the network more resilient to environmental variations.

In conclusion, based on both quantitative and qualitative

assessments, RV-YOLOX proves to be more effective and

robust for object detection tasks in inland water surface

environments.

VI. CONCLUSION

In this paper, we explored object detection in inland

waterways utilizing 3+1D MMW radar and cameras. We

proposed both a radar feature extraction model and a

fusion detection network that leverages radar and vision

information. The radar feature extraction model employs a

point transformer architecture to extract features from 3D point

clouds and convert radar-extracted features into RGB images.

The fusion detection network, named RV-YOLOX, introduces

an additional radar input branch and a self-attention fusion

block to deeply integrate radar and vision information on the

YOLOX network framework. In the experimental section, we

conducted a comprehensive evaluation using different sizes

of YOLOX (YOLOX-L, YOLOX-M, YOLOX-S, YOLOX-X)

for both pure vision and radar-vision sources. The findings

indicate that RV-YOLOX significantly enhances performance,

particularly in low-light conditions, compared to pure-vision

approaches. For future work, we aim to expand our research

to include semantic segmentation tasks for USVs in inland

waters, utilizing both vision and radar sensors.
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