Search results for: maritime traffic network extraction
3253 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: Emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9913252 Improving Multi-storey Building Sensor Network with an External Hub
Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis
Abstract:
Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.Keywords: Wireless sensor networks, radio propagation, building monitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15553251 Use of Hair as an Indicator of Environmental Lead Pollution: Characteristics and Seasonal Variation of Lead Pollution in Egypt
Authors: A. A. K. Abou-Arab, M. A. Abou Donia, Nevin E. Sharaf, Sherif R. Mohamed, A. K. Enab
Abstract:
Lead being a toxic heavy metal that mankind is exposed to the highest levels of this metal from environmental pollutants. A total of 180 Male scalp hair samples were collected from different environments in Greater Cairo (GC), i.e. industrial, heavy traffic and rural areas (60 samples from each) having different activities during the period of, 1/5/2010 to 1/11/2012. Hair samples were collected during five stages. Data proved that the concentration of lead in male industrial areas of Cairo ranged between 6.2847 to 19.0432 μg/g, with mean value of 12.3288 μg/g. On the other hand, lead content of hair samples of residential-traffic areas ranged between 2.8634 to 16.3311 μg/g with mean value of 9.7552 μg/g. While lead concentration on the hair of the male residents living in rural area ranged between 1.0499-9.0402μg/g with mean value of 4.7327 μg/g. The Pb concentration in scalp hair of Cairo residents of residential-traffic and rural traffic areas was observed to follow the same pattern. The pattern was that of decrease concentration of summer and its increase in winter. Then, there was a marked increase in Pb concentration of summer 2012, and this increase was significant. These were obviously seen for the residential-traffic and rural areas residents. Pb pollution in residents of industrial areas showed the same seasonal pattern, but there was marked to decrease in Pb concentration of summer 2012, and this decrease was significant. Lead pollution in residents of GC was serious. It is worth noting that the atmosphere is still contaminated by lead despite a decade of using unleaded gasoline. Strong seasonal variation in higher Pb concentration on winter than in summer was found. Major contributions to the pollution with Pb could include industry emissions, motor vehicle emissions and long transported dust from outside Cairo. More attention should be paid to the reduction of Pb content of the urban aerosol and to the Pb pollution health.
Keywords: Hair, lead, environmental exposure, seasonal variations, Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16933250 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6593249 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.
Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26803248 Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica granatum) Peel Extracts
Authors: P. Rahnemoon, M. Sarabi Jamab, M. Javanmard Dakheli, A. Bostan
Abstract:
In recent years, tendency to use of natural antimicrobial agents in food industry has increased. Pomegranate peels containing phenolic compounds and anti-microbial agents, are counted as valuable source for extraction of these compounds. In this study, the extraction of pomegranate peel extract was carried out at different ethanol/water ratios (40:60, 60:40, and 80:20), temperatures (25, 40, and 55 ˚C), and time durations (20, 24, and 28 h). The extraction yield, phenolic compounds, flavonoids, and anthocyanins were measured. Antimicrobial activity of pomegranate peel extracts were determined against some food-borne microorganisms such as Salmonella enteritidis, Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Aspergillus niger, and Saccharomyces cerevisiae by agar diffusion and MIC methods. Results showed that at ethanol/water ratio 60:40, 25 ˚C and 24 h maximum amount of phenolic compounds (349.518 mg gallic acid/g dried extract), flavonoids (250.124 mg rutin/g dried extract), anthocyanins (252.047 mg cyanidin3glucoside/100 g dried extract), and the strongest antimicrobial activity were obtained. All extracts’ antimicrobial activities were demonstrated against every tested microorganisms. Staphylococcus aureus showed the highest sensitivity among the tested microorganisms.
Keywords: Antimicrobial agents, phenolic compounds, pomegranate peel, solvent extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19573247 Development of Accident Predictive Model for Rural Roadway
Authors: Fajaruddin Mustakim, Motohiro Fujita
Abstract:
This paper present the study carried out of accident analysis, black spot study and to develop accident predictive models based on the data collected at rural roadway, Federal Route 50 (F050) Malaysia. The road accident trends and black spot ranking were established on the F050. The development of the accident prediction model will concentrate in Parit Raja area from KM 19 to KM 23. Multiple non-linear regression method was used to relate the discrete accident data with the road and traffic flow explanatory variable. The dependent variable was modeled as the number of crashes namely accident point weighting, however accident point weighting have rarely been account in the road accident prediction Models. The result show that, the existing number of major access points, without traffic light, rise in speed, increasing number of Annual Average Daily Traffic (AADT), growing number of motorcycle and motorcar and reducing the time gap are the potential contributors of increment accident rates on multiple rural roadway.Keywords: Accident Trends, Black Spot Study, Accident Prediction Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32843246 A Practical Approach for Electricity Load Forecasting
Authors: T. Rashid, T. Kechadi
Abstract:
This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.
Keywords: Daily peak load forecasting, feed forward and feedback multi-context neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18563245 Region-Based Segmentation of Generic Video Scenes Indexing
Authors: Aree A. Mohammed
Abstract:
In this work we develop an object extraction method and propose efficient algorithms for object motion characterization. The set of proposed tools serves as a basis for development of objectbased functionalities for manipulation of video content. The estimators by different algorithms are compared in terms of quality and performance and tested on real video sequences. The proposed method will be useful for the latest standards of encoding and description of multimedia content – MPEG4 and MPEG7.Keywords: Object extraction, Video indexing, Segmentation, Optical flow, Motion estimators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13563244 Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process
Authors: Sheng-Hong Pong, Herng-Yu Huang, Yi-Ju Lee, Shih-Hsuan Chiu
Abstract:
In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests.Keywords: back-propagation, identification, neural network, penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12813243 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks
Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad
Abstract:
In this paper, we have proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach to reduce the probability of network attacks.
Keywords: Network security, Intrusion detection, Honeypot, Snort, Nmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25313242 Effects of Network Dynamics on Routing Efficiency in P2P Networks
Authors: Mojca Ciglaric, Andrej Krevl, Matjaž Pancur, Tone Vidmar
Abstract:
P2P Networks are highly dynamic structures since their nodes – peer users keep joining and leaving continuously. In the paper, we study the effects of network change rates on query routing efficiency. First we describe some background and an abstract system model. The chosen routing technique makes use of cached metadata from previous answer messages and also employs a mechanism for broken path detection and metadata maintenance. Several metrics are used to show that the protocol behaves quite well even with high rate of node departures, but above a certain threshold it literally breaks down and exhibits considerable efficiency degradation.Keywords: Network dynamics, overlay network, P2P system, routing efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13613241 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm
Authors: D. Singh, R. Yousefi, M. Boroushaki
Abstract:
Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.
Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22063240 Detection of Actuator Faults for an Attitude Control System using Neural Network
Authors: S. Montenegro, W. Hu
Abstract:
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19943239 Hypoglycemic Activity of Water Soluble Polysaccharides of Yam (Dioscorea hispida Dents) Prepared by Aqueous, Papain, and Tempeh Inoculum Assisted Extractions
Authors: Teti Estiasih, Harijono, Weny Bekti Sunarharum, Atina Rahmawati
Abstract:
This research studied the hypoglycemic effect of water soluble polysaccharide (WSP) extracted from yam (Dioscorea hispida) tuber by three different methods: aqueous extraction, papain assisted extraction, and tempeh inoculums assisted extraction. The two later extraction methods were aimed to remove WSP binding protein to have more pure WSP. The hypoglycemic activities were evaluated by means in vivo test on alloxan induced hyperglycemic rats, glucose response test (GRT), in situ glucose absorption test using everted sac, and short chain fatty acids (SCFAs) analysis. All yam WSP extracts exhibited ability to decrease blood glucose level in hyperglycemia condition as well as inhibited glucose absorption and SCFA formation. The order of hypoglycemic activity was tempeh inoculums assisted- >papain assisted- >aqueous WSP extracts. GRT and in situ glucose absorption test showed that order of inhibition was papain assisted- >tempeh inoculums assisted- >aqueous WSP extracts. Digesta of caecum of yam WSP extracts oral fed rats had more SCFA than control. Tempeh inoculums assisted WSP extract exhibited the most significant hypoglycemic activity.Keywords: hypoglycemic activity, papain, tempeh inoculums, water soluble polysaccharides, yam (Discorea hispida)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30583238 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17333237 Block Activity in Metric Neural Networks
Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez
Abstract:
The model of neural networks on the small-world topology, with metric (local and random connectivity) is investigated. The synaptic weights are random, driving the network towards a chaotic state for the neural activity. An ordered macroscopic neuron state is induced by a bias in the network connections. When the connections are mainly local, the network emulates a block-like structure. It is found that the topology and the bias compete to influence the network to evolve into a global or a block activity ordering, according to the initial conditions.Keywords: Block attractor, random interaction, small world, spin glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13393236 Social Movements and the Diffusion of Tactics and Repertoires: Activists' Network in Anti-globalism Movement
Authors: Kyoko Tominaga
Abstract:
Non-Government Organizations (NGOs), Non-Profit Organizations (NPOs), Social Enterprises and other actors play an important role in political decisions in governments at the international levels. Especially, such organizations’ and activists’ network in civil society is quite important to effect to the global politics. To solve the complex social problems in global era, diverse actors should corporate each other. Moreover, network of protesters is also contributes to diffuse tactics, information and other resources of social movements.Based on the findings from the study of International Trade Fairs (ITFs), the author analyzes the network of activists in anti-globalism movement. This research focuses the transition of 54 activists’ whole network in the “protest event” against 2008 G8 summit in Japan. Their network is examined at the three periods: Before protest event phase, during protest event phase and after event phase. A mixed method is used in this study: the author shows the hypothesis from social network analysis and evaluates that with interview data analysis. This analysis gives the two results. Firstly, the more protesters participate to the various events during the protest event, the more they build the network. After that, active protesters keep their network as well. From interview data, we can understand that the active protesters can build their network and diffuse the information because they communicate with other participants and understand that diverse issues are related. This paper comes to same conclusion with previous researches: protest events activate the network among the political activists. However, some participants succeed to build their network, others do not. “Networked” activists are participated in the various events for short period of time and encourage the diffusion of information and tactics of social movements.
Keywords: Social Movement, Global Justice Movement, Tactics, Diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22033235 Traffic Density Measurement by Automatic Detection of Vehicles Using Gradient Vectors from Aerial Images
Authors: Saman Ghaffarian, Ilgın Gökasar
Abstract:
This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.Keywords: Aerial images, intelligent transportation systems, traffic density measurement, vehicle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29373234 Extraction of Data from Web Pages: A Vision Based Approach
Authors: P. S. Hiremath, Siddu P. Algur
Abstract:
With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.
Keywords: Web data records, web data regions, web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19033233 New Mitigating Technique to Overcome DDOS Attack
Authors: V. Praveena, N. Kiruthika
Abstract:
In this paper, we explore a new scheme for filtering spoofed packets (DDOS attack) which is a combination of path fingerprint and client puzzle concepts. In this each IP packet has a unique fingerprint is embedded that represents, the route a packet has traversed. The server maintains a mapping table which contains the client IP address and its corresponding fingerprint. In ingress router, client puzzle is placed. For each request, the puzzle issuer provides a puzzle which the source has to solve. Our design has the following advantages over prior approaches, 1) Reduce the network traffic, as we place a client puzzle at the ingress router. 2) Mapping table at the server is lightweight and moderate.
Keywords: Client puzzle, DDOS attack, Egress, Ingress, IP Spoofing, Spoofed Packet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16293232 Network Coding-based ARQ scheme with Overlapping Selection for Resource Limited Multicast/Broadcast Services
Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon
Abstract:
Network coding has recently attracted attention as an efficient technique in multicast/broadcast services. The problem of finding the optimal network coding mechanism maximizing the bandwidth efficiency is hard to solve and hard to approximate. Lots of network coding-based schemes have been suggested in the literature to improve the bandwidth efficiency, especially network coding-based automatic repeat request (NCARQ) schemes. However, existing schemes have several limitations which cause the performance degradation in resource limited systems. To improve the performance in resource limited systems, we propose NCARQ with overlapping selection (OS-NCARQ) scheme. The advantages of OS-NCARQ scheme over the traditional ARQ scheme and existing NCARQ schemes are shown through the analysis and simulations.
Keywords: ARQ, Network coding, Multicast/Broadcast services, Packet-based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15133231 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach
Authors: E. Nemati Lay, M. Peymani, E. Sanjari
Abstract:
Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.
Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32523230 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator
Authors: A.Muthuramalingam, S.Himavathi
Abstract:
Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14933229 Distributed Load Flow Analysis using Graph Theory
Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy
Abstract:
In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.Keywords: Radial Distribution network, Graph, Load-flow, Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31483228 Off-Shore Port Management on the Environmental Issue - Case Study of Sichang Harbor
Authors: Sarisa Pechpoothong
Abstract:
The research is to minimize environmental damage pertinent to maritime activities about the operation of lighter boat anchorage and its tugboat. The guidance on upgrading current harbor service and infrastructure has been provided to Kho Sichang Municpality. This will involve a study of the maritime logistics of the water area under jurisdiction of the Sichang island Municipality and possible recommendations may involve charging taxes, regulations and fees. With implementing these recommendations will help in protection of the marine environment and in increasing operator functionality. Additionally, our recommendation is to generate a consistent revenue stream to the municipality. The action items contained in this research are feasible and effective, the success of these initiatives are heavily dependent upon successful promotion and enforcement. Promoting new rules and regulations effectively and peacefully can be done through theories and techniques used in the psychology of persuasion. In order to assure compliance with the regulations, the municipality must maintain stringent patrols and fines for violators. In order to become success, the Municipality must preserve a consistent, transparent and significant enforcement system. Considering potential opportunities outside of the current state of the municipality, the authors recommend that Koh Sichang be given additional jurisdiction to capture value from the master vessels, as well as to confront the more significant environmental challenges these vessels pose. Finally, the authors recommend that the Port of Koh Sichang Island obtain a free port status in order to increase economic viability and overall sustainability.
Keywords: Harbor, Garbage Collection Service, Environment, Off-shore port.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19733227 Interbank Networks and the Benefits of Using Multilayer Structures
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.
Keywords: Complexity, interbank networks, multilayer networks, network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8563226 PmSPARQL: Extended SPARQL for Multi-paradigm Path Extraction
Authors: Thabet Slimani, Boutheina Ben Yaghlane, Khaled Mellouli
Abstract:
In the last few years, the Semantic Web gained scientific acceptance as a means of relationships identification in knowledge base, widely known by semantic association. Query about complex relationships between entities is a strong requirement for many applications in analytical domains. In bioinformatics for example, it is critical to extract exchanges between proteins. Currently, the widely known result of such queries is to provide paths between connected entities from data graph. However, they do not always give good results while facing the user need by the best association or a set of limited best association, because they only consider all existing paths but ignore the path evaluation. In this paper, we present an approach for supporting association discovery queries. Our proposal includes (i) a query language PmSPRQL which provides a multiparadigm query expressions for association extraction and (ii) some quantification measures making easy the process of association ranking. The originality of our proposal is demonstrated by a performance evaluation of our approach on real world datasets.
Keywords: Association extraction, query Language, relationships, knowledge base, multi-paradigm query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14513225 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Authors: Thiang, Handry Khoswanto, Rendy Pangaldus
Abstract:
Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22913224 Measuring the Performance of the Accident Reductions: Evidence from Izmir City
Authors: Y. Duvarci, S. Mizokami
Abstract:
Traffic enforcement units (the Police) are partly responsible for the severity and frequency of the traffic accidents via the effectiveness of their safety measures. The Police claims that the reductions in accidents and their severities occur largely by their timely interventions at the black spots, through traffic management or temporary changes in the road design (guiding, reducing speeds and eliminating sight obstructions, etc.). Yet, some other external factors than the Police measures may intervene into which such claims require a statistical confirmation. In order to test the net impact of the Police contribution in the reduction of the number of crashes, Chi square test was applied for 25 spots (streets and intersections) and an average evaluation was achieved for general conclusion in the case study of Izmir city. Separately, the net impact of economic crisis in the reduction of crashes is assessed by the trend analysis for the case of the economic crisis with the probable reduction effects on the trip generation or modal choice. Finally, it was proven that the Police measures were effective to some degree as they claimed, though the economic crisis might have only negligible contribution to the reductions in the same period observed.Keywords: Road Safety, Police, Enforcement units, Chi Squaretest, Economic Impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692