Search results for: a method of problem solving.
9945 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability
Authors: N. Kumaresan , J. Kavikumar, Kuru Ratnavelu
Abstract:
In this paper, solution of fuzzy differential equation under general differentiability is obtained by simulink. The simulink solution is equivalent or very close to the exact solution of the problem. Accuracy of the simulink solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.Keywords: Fuzzy differential equation, Generalized differentiability, H-difference and Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24349944 Choosing Search Algorithms in Bayesian Optimization Algorithm
Authors: Hao Wu, Jonathan L. Shapiro
Abstract:
The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.
Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16989943 New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System
Authors: Fadi Awawdeh, O. Alsayyed
Abstract:
New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.
Keywords: Soliton Solution, Hirota Bilinear Method, ANNV System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15119942 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models.
The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces.
The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations.
In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.
Keywords: Eddy current, Finite element method, Non destructive testing, Numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31419941 Class Outliers Mining: Distance-Based Approach
Authors: Nabil M. Hewahi, Motaz K. Saad
Abstract:
In large datasets, identifying exceptional or rare cases with respect to a group of similar cases is considered very significant problem. The traditional problem (Outlier Mining) is to find exception or rare cases in a dataset irrespective of the class label of these cases, they are considered rare events with respect to the whole dataset. In this research, we pose the problem that is Class Outliers Mining and a method to find out those outliers. The general definition of this problem is “given a set of observations with class labels, find those that arouse suspicions, taking into account the class labels". We introduce a novel definition of Outlier that is Class Outlier, and propose the Class Outlier Factor (COF) which measures the degree of being a Class Outlier for a data object. Our work includes a proposal of a new algorithm towards mining of the Class Outliers, presenting experimental results applied on various domains of real world datasets and finally a comparison study with other related methods is performed.Keywords: Class Outliers, Distance-Based Approach, Outliers Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33889940 Cross-Industry Innovations–Systematic Identification of Ideas for Radical Problem Solving
Authors: Niklas Echterhoff, Benjamin Amshoff, Jürgen Gausemeier
Abstract:
Creativity is often based on an unorthodox recombination of knowledge; in fact: 80% of all innovations use given knowledge and put it into a new combination. Cross-industry innovations follow this way of thinking and bring together problems and solution ideas from different industries. Therefore analogies and search strategies have to be developed. Taking this path, the questions where to search, what to search and how to search have to be answered. Afterwards, the gathered information can be used within a planned search process. Identified solution ideas have to be assessed and analyzed in detail for the success promising adaption planning.Keywords: analogy building, cross-industry innovations, knowledge transfer, solution adaption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20599939 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.
Keywords: Discrete Tomography, exactly-1-4-adjacency, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24579938 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element
Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao
Abstract:
V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13319937 Significance of Splitting Method in Non-linear Grid system for the Solution of Navier-Stokes Equation
Abstract:
Solution to unsteady Navier-Stokes equation by Splitting method in physical orthogonal algebraic curvilinear coordinate system, also termed 'Non-linear grid system' is presented. The linear terms in Navier-Stokes equation are solved by Crank- Nicholson method while the non-linear term is solved by the second order Adams-Bashforth method. This work is meant to bring together the advantage of Splitting method as pressure-velocity solver of higher efficiency with the advantage of consuming Non-linear grid system which produce more accurate results in relatively equal number of grid points as compared to Cartesian grid. The validation of Splitting method as a solution of Navier-Stokes equation in Nonlinear grid system is done by comparison with the benchmark results for lid driven cavity flow by Ghia and some case studies including Backward Facing Step Flow Problem.
Keywords: Navier-Stokes, 'Non-linear grid system', Splitting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15289936 A Direct Probabilistic Optimization Method for Constrained Optimal Control Problem
Authors: Akbar Banitalebi, Mohd Ismail Abd Aziz, Rohanin Ahmad
Abstract:
A new stochastic algorithm called Probabilistic Global Search Johor (PGSJ) has recently been established for global optimization of nonconvex real valued problems on finite dimensional Euclidean space. In this paper we present convergence guarantee for this algorithm in probabilistic sense without imposing any more condition. Then, we jointly utilize this algorithm along with control parameterization technique for the solution of constrained optimal control problem. The numerical simulations are also included to illustrate the efficiency and effectiveness of the PGSJ algorithm in the solution of control problems.
Keywords: Optimal Control Problem, Constraints, Direct Methods, Stochastic Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16969935 Observations of Conformity in the Health Professions
Authors: Tanya N. Beran, Michelle A. Drefs, Ghazwan Altabbaa, Nouf Al Harbi, Noof Al Baz, Elizabeth Oddone Paolucci
Abstract:
Although interprofessional practice is a collaborative approach for problem solving among health professionals, its implementation can present challenges to its team members. In particular, they may feel pressured to agree with or conform to other members who share information that is contrary to their own understanding. Obtaining evidence of this phenomenon is challenging, as team members may underreport their conformity behaviors due to reasons such as social desirability. In this paper, a series of studies are reviewed in which several approaches to assessing conformity in the health care professions are tested. Simulations, questionnaires, and behavior checklists can be used to measure conformity behaviors. Insights from these studies show that a significant proportion of people conform either in the presence or absence of others, express a variety of verbal and nonverbal behaviors when considering whether to conform to others, may shift between conforming and moments later not conforming (and vice versa), and may not accurately report whether they conformed. A method of measuring conformity using the implicit bias test is also discussed. People at all levels in the healthcare system are encouraged to develop both formal and informal strategies to manage the conformity pressures that people face.
Keywords: Conformity, decision-making, interprofessional teams, medical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4349934 Vibration Base Identification of Impact Force Using Genetic Algorithm
Authors: R. Hashemi, M.H.Kargarnovin
Abstract:
This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.Keywords: Genetic Algorithm, Inverse problem, Optimization, Vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15549933 Computations of Bezier Geodesic-like Curves on Spheres
Authors: Sheng-Gwo Chen, Wen-Haw Chen
Abstract:
It is an important problem to compute the geodesics on a surface in many fields. To find the geodesics in practice, however, the traditional discrete algorithms or numerical approaches can only find a list of discrete points. The first author proposed in 2010 a new, elegant and accurate method, the geodesic-like method, for approximating geodesics on a regular surface. This paper will present by use of this method a computation of the Bezier geodesic-like curves on spheres.Keywords: Geodesics, Geodesic-like curve, Spheres, Bezier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16229932 Stock Portfolio Selection Using Chemical Reaction Optimization
Authors: Jin Xu, Albert Y.S. Lam, Victor O.K. Li
Abstract:
Stock portfolio selection is a classic problem in finance, and it involves deciding how to allocate an institution-s or an individual-s wealth to a number of stocks, with certain investment objectives (return and risk). In this paper, we adopt the classical Markowitz mean-variance model and consider an additional common realistic constraint, namely, the cardinality constraint. Thus, stock portfolio optimization becomes a mixed-integer quadratic programming problem and it is difficult to be solved by exact optimization algorithms. Chemical Reaction Optimization (CRO), which mimics the molecular interactions in a chemical reaction process, is a population-based metaheuristic method. Two different types of CRO, named canonical CRO and Super Molecule-based CRO (S-CRO), are proposed to solve the stock portfolio selection problem. We test both canonical CRO and S-CRO on a benchmark and compare their performance under two criteria: Markowitz efficient frontier (Pareto frontier) and Sharpe ratio. Computational experiments suggest that S-CRO is promising in handling the stock portfolio optimization problem.Keywords: Stock portfolio selection, Markowitz model, Chemical Reaction Optimization, Sharpe ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20759931 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: Airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19419930 Online Collaboration Learning: A Way to Enhance Students' Achievement at Kingdom of Bahrain
Authors: Jaflah H. Al-Ammary
Abstract:
The increasing recognition of the need for education to be closely aligned with team playing, project based learning and problem solving approaches has increase the interest in collaborative learning among university and college instructors. Using online collaboration learning in learning can enhance the outcome and achievement of students as well as improve their communication, critical thinking and personnel skills. The current research aims at examining the effect of OCL on the student's achievement at Kingdom of Bahrain. Numbers of objectives were set to achieve the aim of the research include: investigating the current situation regarding the collaborative learning and OCL at the Kingdom of Bahrain by identifying the advantages and effectiveness of OCL as a learning tool over traditional learning, examining the factors that affect OCL as well as examining the impact of OCL on the student's achievement. To achieve these objectives, quantitative method was adopted. Two hundred and thirty one questionnaires were distributed to students in different local and private universities at Kingdom of Bahrain. The findings of the research show that most of the students prefer to use FTFCL in learning and that OCL is already adopted in some universities especially in University of Bahrain. Moreover, the most factors affecting the adopted OCL are perceived readiness, and guidance and support.
Keywords: Collaborative learning, perceived readiness, student achievement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22999929 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network
Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna
Abstract:
This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.
Keywords: Optimization, distributed generation, integration, slime mould algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6449928 A Discrete Filtering Algorithm for Impulse Wave Parameter Estimation
Authors: Khaled M. EL-Naggar
Abstract:
This paper presents a new method for estimating the mean curve of impulse voltage waveforms that are recorded during impulse tests. In practice, these waveforms are distorted by noise, oscillations and overshoot. The problem is formulated as an estimation problem. Estimation of the current signal parameters is achieved using a fast and accurate technique. The method is based on discrete dynamic filtering algorithm (DDF). The main advantage of the proposed technique is its ability in producing the estimates in a very short time and at a very high degree of accuracy. The algorithm uses sets of digital samples of the recorded impulse waveform. The proposed technique has been tested using simulated data of practical waveforms. Effects of number of samples and data window size are studied. Results are reported and discussed.
Keywords: Digital Filtering, Estimation, Impulse wave, Stochastic filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18499927 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace
Authors: U. Prasopchingchana
Abstract:
The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.Keywords: Conduction, heat transfer, multi-layer door, natural convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20979926 Exploration of Autistic Children using Case Based Reasoning System with Cognitive Map
Authors: Ebtehal Alawi Alsaggaf, Shehab A. Gamalel-Din
Abstract:
Exploring an autistic child in Elementary school is a difficult task that must be fully thought out and the teachers should be aware of the many challenges they face raising their child especially the behavioral problems of autistic children. Hence there arises a need for developing Artificial intelligence (AI) Contemporary Techniques to help diagnosis to discover autistic people. In this research, we suggest designing architecture of expert system that combine Cognitive Maps (CM) with Case Based Reasoning technique (CBR) in order to reduce time and costs of traditional diagnosis process for the early detection to discover autistic children. The teacher is supposed to enter child's information for analyzing by CM module. Then, the reasoning processor would translate the output into a case to be solved a current problem by CBR module. We will implement a prototype for the model as a proof of concept using java and MYSQL. This will be provided a new hybrid approach that will achieve new synergies and improve problem solving capabilities in AI. And we will predict that will reduce time, costs, the number of human errors and make expertise available to more people who want who want to serve autistic children and their families.Keywords: Autism, Cognitive Maps (CM), Case Based Reasoning technique (CBR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19619925 An Approximate Solution of the Classical Van der Pol Oscillator Coupled Gyroscopically to a Linear Oscillator Using Parameter-Expansion Method
Authors: Mohammad Taghi Darvishi, Samad Kheybari
Abstract:
In this article, we are dealing with a model consisting of a classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. The major problem is analyzed. The regular dynamics of the system is considered using analytical methods. In this case, we provide an approximate solution for this system using parameter-expansion method. Also, we find approximate values for frequencies of the system. In parameter-expansion method the solution and unknown frequency of oscillation are expanded in a series by a bookkeeping parameter. By imposing the non-secularity condition at each order in the expansion the method provides different approximations to both the solution and the frequency of oscillation. One iteration step provides an approximate solution which is valid for the whole solution domain.
Keywords: Parameter-expansion method, classical Van der Pol oscillator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18589924 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation
Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo
Abstract:
In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.
Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16809923 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.
Keywords: Adomian, Decomposition Method, Generalized Thermoelasticity, algorithm, empirical parameter, lattice design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5539922 Human Body Configuration using Bayesian Model
Authors: Rui. Zhang, Yiming. Pi
Abstract:
In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views.Keywords: Bayesian framework, MCMC, model based, human body configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13169921 Visual Object Tracking and Interception in Industrial Settings
Authors: Ahmet Denker, Tuğrul Adıgüzel
Abstract:
This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.Keywords: Object recognition, rendezvous planning, robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17269920 Partial Derivatives and Optimization Problem on Time Scales
Authors: Francisco Miranda
Abstract:
The optimization problem using time scales is studied. Time scale is a model of time. The language of time scales seems to be an ideal tool to unify the continuous-time and the discrete-time theories. In this work we present necessary conditions for a solution of an optimization problem on time scales. To obtain that result we use properties and results of the partial diamond-alpha derivatives for continuous-multivariable functions. These results are also presented here.Keywords: Lagrange multipliers, mathematical programming, optimization problem, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17259919 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance the capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision problem using Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting policy, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method show better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.
Keywords: Handover, HetNets, interference, MADM, small cells, TOPSIS, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5739918 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5059917 Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling
Authors: A. Johannet, B. Vayssade, D. Bertin
Abstract:
Neural networks are well known for their ability to model non linear functions, but as statistical methods usually does, they use a no parametric approach thus, a priori knowledge is not obvious to be taken into account no more than the a posteriori knowledge. In order to deal with these problematics, an original way to encode the knowledge inside the architecture is proposed. This method is applied to the problem of the evapotranspiration inside karstic aquifer which is a problem of huge utility in order to deal with water resource.Keywords: Neural-Networks, Hydrology, Evapotranpiration, Hidden Function Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18079916 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types
Authors: Chaghoub Soraya, Zhang Xiaoyan
Abstract:
This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.Keywords: Approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595