**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30309

##### Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling

**Authors:**
A. Johannet,
B. Vayssade,
D. Bertin

**Abstract:**

**Keywords:**
Hydrology,
Neural-Networks,
Evapotranpiration,
Hidden Function Modeling

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1084200

**References:**

[1] Y. Oussar, G. Dreyfus. "How to be a Gray Box: Dynamic Semi-physical Modeling". Neural Networks, invited paper, vol. 14, 2001, pp. 1161-1172.

[2] A. Johannet, A. Mangin, D. D'Hulst. "Subterranean Water Infiltration Modelling by Neural Networks: Use of Water Source Flow". In Proc. of ICANN, M. Marinaro and P.G. Morasso eds, Springer, 1994, pp. 1033- 1036.

[3] G. Cybenko. "Approximation by Superposition of a Sigmoidal Function". Math. Ctrl Signal Syst, 2, 1989, pp. 293-342.

[4] H. Moradkhani, K. Hsu, H. V. Gupta, S. Sorooshian. "Improved Streamflow Forecasting Using Self-Organizing Radial Basis Function Artificial Neural Networks". Journal of Hydrology, 295, 2004, pp. 246- 262.

[5] I. N. Daliakopoulos, P. Coulibaly, I. K. Tsanis. "Groundwater Level Forecasting Using Artificial Neural Networks". Journal of Hydrology 309, 2005, pp. 229-240.

[6] D. I. Jeong, Y. O. Kim. "Rainfall-Runoff models using artificial neural networks for ensemble streamflow prediction". Hydrological Processes, 19, 2005, pp. 3819-3835.

[7] B. Kurtulus M. Rasac. "Evaluation of the ability of an artificial neural network model to simulate the input-outpout responses of a large karstic aquifer : the Larochefoucault aquifer (Charente - France)". Hydrogeological Journal, 2006.

[8] A. P. Jaquin, A. Y. Shamseldin. "Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems". Journal of Hydrology, 329, 2006, pp. 145-173.

[9] A.-L. Courbis, E. Touraud and B. Vayssade. "Water balance diagnosis based on a simulation tool". ENVIROSOFT'98, 1998, pp. 199-208.

[10] A. Johannet, P-A. Ayral, B. Vayssade. "Modelling non Measurable Processes by Neural Networks: Forecasting Underground Flow Case Study of the Cèze Basin (Gard - France)". CISSE, 2006.

[11] D. Rumelhart, G. Hinton, R. Williams. "Learning Internal Representation by Error Propagation". PDP, MIT Press, 1988.

[12] E.A. Bender. "Mathematical Method for Artificial Intelligence". IEEE Computer Society Press, 1996.

[13] A.J. Shepherd. "Second-Order Methods for Neural Networks". Springer, 1997.

[14] D.W. Marquardt. Journal of the Society for Industrial and Applied Mathematics, vol 11, pp. 431-441.

[15] W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery. "Numerical recipies in C". Cambridge University Press, 1992.

[16] Narendra K. S., Parthasarathy K. "Gradient Methods for the Optimization of Dynamical Systems Containning Neural Networks". IEEE trans. neur. net., vol 2, 1991, n┬░2, pp. 252-262.

[17] Werbos P.J. "Backpropagation Throught Time : What it Does and How to Do It". Proc. IEEE, 78, N┬░10, 1990, pp. 1550-1560.

[18] Mangin A. (1970). "Le système karstique du Baget (Ariège)". Annales de Spéléologie, vol 25, fasc. 3.

[19] J.E. Nash, J. V. Sutcliffe. "River Flow Forecasting through Conceptual Model. Part I - A Discussion of Principles". Journal of Hydrology, 10, 1970, pp. 282-290.

[20] L. Oudin et al. "Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling". Journal of hydrology, 303, 2005, pp. 290-306.

[21] Geman S. Bienenstock E. & Doursat R. "Neural networks and the bias/variance dilemma". Neural Computation 4, 1992, pp. 1-58.