Search results for: Duplex stainless steel welding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 868

Search results for: Duplex stainless steel welding

268 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying

Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae

Abstract:

An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.

Keywords: FEM, HVOF, Interfacial Temperature, Splat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
267 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer. 

Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
266 Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications

Authors: Nabil A. Ahmed

Abstract:

This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.

Keywords: Induction heating, three-phase, conversion circuit, pulse width modulation, pulse density modulation, high frequency, soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
265 The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method

Authors: M. Yildirim, A. S. Kipcak, F. T. Senberber, M. O. Asensio, E. M. Derun, S. Piskin

Abstract:

Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectroscopy. The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8·4H2O) was synthesized as best.

Keywords: Hydrothermal synthesis, potassium borate, potassium nitrate, santite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263
264 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang

Abstract:

Yield point represents the upper limit of forces which can be applied on a specimen without causing any permanent deformation. After yielding, the behavior of specimen suddenly changes including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of thermography camera. The yield point of specimens was estimated by the help of temperature dip which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing repeatability analysis. The effect of temperature imperfection and light source has been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of thermographic technique.

Keywords: Signal to noise ratio, thermoelastic effect, thermography, yield point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311
263 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: Channel estimation, inter-cell interference, pilot contamination attacks, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
262 Stabilizer Fillet Weld Strength under Multiaxial Loading (Effect of Force, Size and Residual Stress)

Authors: Iman Hadipour, Javad Marzbanrad

Abstract:

In this paper, the strength of a stabilizer is determined when the static and fatigue multiaxial loading are applied. Stabilizer is a part of suspension system in the heavy truck for stabilizing the cabin against the vibration of the road which composes of a thin-walled tube joined to a forge component by fillet weld. The component is loaded by non proportional random sequence of torsion and bending. Residual stress of welding process is considered here for static loading. This static loading with road irregularities are applied in this study as fatigue case that can affected in the fillet welded area of this part. The stresses in the welded structure are calculated using FEA. In addition, the fatigue with multi axial loading in the fillet weld is also investigated and the critical zone of the stabilizer is specified and presented by graphs. Residual stresses that have been resulted by the thermal forces are considered in FEA. Force increasing is the element of finding the critical point of the component.

Keywords: Fillet weld, fatigue, weld toe crack, weld root crack, S-N curve, multiaxial load, residual stress, combined force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
261 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: Slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
260 Effects of Operating Conditions on Calcium Carbonate Fouling in a Plate Heat Exchanger

Authors: K. Pana-Suppamassadu, P. Jeimrittiwong, P. Narataruksa, S. Tungkamani

Abstract:

The aim of this work is to investigate on the internalflow patterns in a plate heat exchanger channel, which affect the rate of sedimentation fouling on the heat transfer surface of the plate heat exchanger. The research methodologies were the computer simulation using Computational Fluid Dynamics (CFD) and the experimental works. COMSOL MULTIPHYSICS™ Version 3.3 was used to simulate the velocity flow fields to verify the low and high flow regions. The results from the CFD technique were then compared with the images obtained from the experiments in which the fouling test rig was set up with a singlechannel plate heat exchanger to monitor the fouling of calcium carbonate. Two parameters were varied i.e., the crossing angle of the two plate: 55/55, 10/10, and 55/10 degree, and the fluid flow rate at the inlet: 0.0566, 0.1132 and 0.1698 m/s. The type of plate “GX-12" (the surface area 0.12 m2, the depth 2.9 mm, the width of fluid flow 215 mm and the thickness of stainless plate of 0.5 mm) was used in this study. The results indicated that the velocity distribution for the case of 55/55 degree seems to be very well organized when compared with the others. Also, an increase in the inlet velocity resulted in the reduction of fouling rate on the surface of plate heat exchangers.

Keywords: Computational fluid dynamics, crossing angles, finite element method, plate heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
259 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver

Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang

Abstract:

In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.

Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
258 Residual Stress in Ground WC-Co Coatings

Authors: M. Jalali Azizpour, H. Mohammadi Majd

Abstract:

High velocity oxygen fuel (HVOF) spray technique is one of the leading technologies that have been proposed as an alternative to the replacement of electrolytic hard chromium plating in a number of engineering applications. In this study, WC-Co powder was coated on AISI1045 steel using high velocity oxy fuel (HVOF) method. The sin2ψ method was used to evaluate the through thickness residual stress by means of XRD after mechanical layer removal process (only grinding). The average of through thickness residual stress using X-Ray diffraction was -400 MPa.

Keywords: Grinding, HVOF, Thermal spray, WC-Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
257 Single Spectrum End Point Predict of BOF with SVM

Authors: Ling-fei Xu, Qi Zhao, Yan-ru Chen, Mu-chun Zhou, Meng Zhang, Shi-xue Xu

Abstract:

SVM ( Support Vector Machine ) is a new method in the artificial neural network ( ANN ). In the steel making, how to use computer to predict the end point of BOF accuracy is a great problem. A lot of method and theory have been claimed, but most of the results is not satisfied. Now the hot topic in the BOF end point predicting is to use optical way the predict the end point in the BOF. And we found that there exist some regular in the characteristic curve of the flame from the mouse of pudding. And we can use SVM to predict end point of the BOF, just single spectrum intensity should be required as the input parameter. Moreover, its compatibility for the input space is better than the BP network.

Keywords: SVM, predict, BOF, single spectrum intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
256 Design and Fabrication of Stent with Negative Poisson’s Ratio

Authors: S. K. Bhullar, J. Ko, F. Ahmed, M. B. G. Jun

Abstract:

The negative Poisson’s ratios can be described in terms of models based on the geometry of the system and the way this geometry changes due to applied loads. As the Poisson’s ratio does not depend on scale hence deformation can take place at the nano to macro level the only requirement is the right combination of the geometry. Our thrust in this paper is to combine our knowledge of tailored enhanced mechanical properties of the materials having negative Poisson’s ratio with the micromachining and electrospining technology to develop a novel stent carrying a drug delivery system. Therefore, the objective of this paper includes (i) fabrication of a micromachined metal sheet tailored with structure having negative Poisson’s ratio through rotating solid squares geometry using femtosecond laser ablation; (ii) rolling fabricated structure and welding to make a tubular structure (iii) wrapping it with nanofibers of biocompatible polymer PCL (polycaprolactone) for drug delivery (iv) analysis of the functional and mechanical performance of fabricated structure analytically and experimentally. Further, as the applications concerned, tubular structures have potential in biomedical for example hollow tubes called stents are placed inside to provide mechanical support to a damaged artery or diseased region and to open a blocked esophagus thus allowing feeding capacity and improving quality of life.

Keywords: Micromachining, electrospining, auxetic materials, enhanced mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3606
255 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: Foamed concrete, Fibres, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4700
254 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: Ni–P coating, electrochemical impedance spectroscopy, heat treatment, cyclic voltammetry, potentiodynamic polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
253 Numerical Analysis of Fractured Process in Locomotive Steel Wheels

Authors: J. Alizadeh K., R. S. Ashofteh, A. Asadi Lari

Abstract:

Railway vehicle wheels are designed to operate in harsh environments and to withstand high hydrostatic contact pressures. This situation may result in critical circumstances, in particular wheel breakage. This paper presents a time history of a series of broken wheels during a time interval [2007-2008] belongs to locomotive fleet on Iranian Railways. Such fractures in locomotive wheels never reported before. Due to the importance of this issue, a research study has been launched to find the potential reasons of this problem. The authors introduce a FEM model to indicate how and where the wheels could have been affected during their operation. Then, the modeling results are presented and discussed in detail.

Keywords: Crack, fatigue, FE analysis, wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
252 The Impact of Cutting Tool Materials on Cutting Force

Authors: M.A. Kamely, M.Y. Noordin

Abstract:

A judicious choice of insert material, tool geometry and cutting conditions can make hard turning produce better surfaces than grinding. In the present study, an attempt has been made to investigate the effect of cutting tool materials on cutting forces (feed force, thrust force and cutting force) in finish hard turning of AISI D2 cold work tool steel. In conclusion of the results obtained with a constant depth of cut and feed rate, it is important to note that cutting force is directly affected by cutting tool material.

Keywords: hard turning, cutting force, cutting tool materials, mixed ceramic, cbn

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3505
251 Modeling of CO2 Removal from Gas Mixtureby 2-amino-2-methyl-1-propanol (AMP) Using the Modified Kent Eisenberg Model

Authors: H. Pahlavanzadeh, A.R.Jahangiri, I. Noshadi

Abstract:

In this paper, the solubility of CO2 in AMP solution have been measured at temperature range of ( 293, 303 ,313,323) K.The amine concentration ranges studied are (2.0, 2.8, and 3.4) M. A solubility apparatus was used to measure the solubility of CO2 in AMP solution on samples of flue gases from Thermal and Central Power Plants of Esfahan Steel Company. The modified Kent Eisenberg model was used to correlate and predict the vapor-liquid equilibria of the (CO2 + AMP + H2O) system. The model predicted results are in good agreement with the experimental vapor-liquid equilibrium measurements.

Keywords: AMP, Carbon dioxide; loading, Flue gases, Modified Kent Eisenberg model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
250 Some Physical Properties of Musk Lime (Citrus Microcarpa)

Authors: M.H.R.O. Abdullah, P.E. Ch'ng, N.A. Yunus

Abstract:

Some physical properties of musk lime (Citrus microcarpa) were determined in this study. The average moisture content (wet basis) of the fruit was found to be 85.10 (±0.72) %. The mean of length, width and thickness of the fruit was 26.36 (±0.97), 26.40 (±1.04) and 25.26 (±0.94) mm respectively. The average value for geometric mean diameter, sphericity, aspect ratio, mass, surface area, volume, true density, bulk density and porosity was 26.00 (±0.82) mm, 98.67 (±2.04) %, 100.23 (±3.28) %, 10.007 (±0.878) g, 2125.07 (±133.93) mm2, 8800.00 (±731.82) mm3, 1002.87 (±39.16) kgm-3, 501.70 (±22.58) kgm-3 and 49.89 (±3.15) % respectively. The coefficient of static friction on four types of structural surface was found to be varying from 0.238 (±0.025) for glass to 0.247 (±0.024) for steel surface.

Keywords: Musk lime, Citrus microcarpa, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256
249 Tomographic Images Reconstruction Simulation for Defects Detection in Specimen

Authors: Kedit J.

Abstract:

This paper is the tomographic images reconstruction simulation for defects detection in specimen. The specimen is the thin cylindrical steel contained with low density materials. The defects in material are simulated in three shapes.The specimen image function will be transformed to projection data. Radon transform and its inverse provide the mathematical for reconstructing tomographic images from projection data. The result of the simulation show that the reconstruction images is complete for defect detection.

Keywords: Tomography, Tomography Reconstruction, Radon Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
248 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios

Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong

Abstract:

This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.

Keywords: Computational analysis, damage scenarios, electronic road signs, finite element, welded connections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334
247 Treatment of Oily Wastewater by Fibrous Coalescer Process: Stage Coalescer and Model Prediction

Authors: Pisut Painmanakul, Kotchakorn Kongkangwarn, Nattawin Chawaloesphonsiya

Abstract:

The coalescer process is one of the methods for oily water treatment by increasing the oil droplet size in order to enhance the separating velocity and thus effective separation. However, the presence of surfactants in an oily emulsion can limit the obtained mechanisms due to the small oil size related with stabilized emulsion. In this regard, the purpose of this research is to improve the efficiency of the coalescer process for treating the stabilized emulsion. The effects of bed types, bed height, liquid flow rate and stage coalescer (step-bed) on the treatment efficiencies in term of COD values were studied. Note that the treatment efficiency obtained experimentally was estimated by using the COD values and oil droplet size distribution. The study has shown that the plastic media has more effective to attach with oil particles than the stainless one due to their hydrophobic properties. Furthermore, the suitable bed height (3.5 cm) and step bed (3.5 cm with 2 steps) were necessary in order to well obtain the coalescer performance. The application of step bed coalescer process in reactor has provided the higher treatment efficiencies in term of COD removal than those obtained with classical process. The proposed model for predicting the area under curve and thus treatment efficiency, based on the single collector efficiency (ηT) and the attachment efficiency (α), provides relatively a good coincidence between the experimental and predicted values of treatment efficiencies in this study.

Keywords: Stage coalescer, stabilized emulsions, treatment efficiency, model prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
246 Application of a Fracture-Mechanics Approach to Gas Pipelines

Authors: Ľubomír Gajdoš, Martin Šperl

Abstract:

This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.

Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
245 Examining the Pearlite Growth Interface in a Fe-C-Mn Alloy

Authors: R. E. Waters, M. J. Whiting, V. Stolojan

Abstract:

A method of collecting composition data and examining structural features of pearlite lamellae and the parent austenite at the growth interface in a 13wt. % manganese steel has been demonstrated with the use of Scanning Transmission Electron Microscopy (STEM). The combination of composition data and the structural features observed at the growth interface show that available theories of pearlite growth cannot explain all the observations.

Keywords: Interfaces, Phase transformations, Pearlite, Scanning Transmission Electron Microscopy (STEM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
244 Wear Regimes of Al-Cu-Mg Matrix Composites

Authors: R. N. Rao, S. L. Tulasi Devi

Abstract:

Tribological behavior and wear regimes of ascast and heattreted Al-Cu-Mg matrix composites containing SiC particles were studied using a pin-on-disc wear testing apparatus against an EN32 steel counterface giving emphasis on wear rate as a function of applied pressures (0.2, 0.6, 1.0 and 1.4 MPa) at different sliding distances (1000, 2000, 3000, 4000 and 5000 meters) and at a fixed sliding speed of 3.35m/s. The results showed that the composite exhibited lower wear rate than that of the matrix alloy and the wear rate of the composites is noted to be invariant to the sliding distance and is reducing by heat treatment. Wear regimes such as low, mild and severe wear were observed as per the Archard-s wear calculations. It is very interesting to note that the mild wear is almost constant in all the wear regimes.

Keywords: Aluminum, matrix, regimes, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
243 Design and Production of Thin-Walled UHPFRC Footbridge

Authors: P. Tej, P. Kněž, M. Blank

Abstract:

The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.

Keywords: Footbridge, UHPFRC, non-linear analysis, shell structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
242 Numerical Investigation on Damage Evolution of Piles inside Liquefied Soil Foundation - Dynamic-Loading Experiments -

Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa

Abstract:

The large and small-scale shaking table tests, which was conducted for investigating damage evolution of piles inside liquefied soil, are numerically simulated and experimental verified by the3D nonlinear finite element analysis. Damage evolution of elasto-plastic circular steel piles and reinforced concrete (RC) one with cracking and yield of reinforcement are focused on, and the failure patterns and residual damages are captured by the proposed constitutive models. The superstructure excitation behind quay wall is reproduced as well.

Keywords: Soil-Structure Interaction, Piles, Soil Liquefaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
241 A New Type Safety-Door for Earthquake Disaster Prevention - Part I

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.

Keywords: Earthquake disaster, FE analysis, Low yield point steel, Safety-doors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
240 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: Elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
239 Investigation on the Feasibility of Composite Coil Spring for Automotive Applications

Authors: D. Abdul Budan, T.S. Manjunatha

Abstract:

This paper demonstrates the feasibility of replacing the metal coil spring with the composite coil spring. Three different types of springs were made using glass fiber, carbon fiber and combination of glass fiber and carbon fiber. The objective of the study is to reduce the weight of the spring. According to the experimental results the spring rate of the carbon fiber spring is 34% more than the glass fiber spring and 45% more than the glass fiber/carbon fiber spring. The weight of the carbon fiber spring is 18% less than the glass fiber spring, 15% less than the Glass fiber/carbon fiber spring and 80% less than the steel spring.

Keywords: Carbon fiber, Glass fiber, Helical composite spring, spring rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4569