Search results for: stochastic simulation algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6444

Search results for: stochastic simulation algorithm.

384 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: Finite Element Analysis, FEA, Fused Deposition Modelling, residual stress, warpage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
383 Design of a Cost Effective Off-Grid Wind-Diesel Hybrid Power System in an Island of Bangladesh

Authors: Nahid-Al-Masood, Rifat Mirza, Jubaer Ahmed, Amina Hasan Abedin, S.R. Deeba, Faeza Hafiz, Mahmuda Begum, A. Hasib Chowdhury

Abstract:

Bangladesh is a developing country with large population. Demand of electrical energy is increasing day by day because of increasing population and industrialization. But due to limited resources, people here are suffering from power crisis problem which is considered as a major obstacle to the economic development. In most of the cases, it is extremely difficult to extend high tension transmission lines to some of the places that are separated from the mainland. Renewable energy is considered to be the right choice for providing clean energy to these remote settlements. This paper proposes a cost effective design of off-grid wind-diesel hybrid power system using combined heat and power (CHP) technology in a grid isolated island, Sandwip, Bangladesh. Design and simulation of the wind-diesel hybrid power system is performed considering different factors for the island Sandwip. Detailed economic analysis and comparison with solar PV system clearly reveals that wind-diesel hybrid power system can be a cost effective solution for the isolated island like Sandwip.

Keywords: renewable energy, off-grid, wind-diesel hybrid system, CHP technology, economic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
382 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network

Authors: A.V.Naresh Babu, S.Sivanagaraju

Abstract:

A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.

Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
381 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: Wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
380 Numerical Simulations of Cross-Flow around Four Square Cylinders in an In-Line Rectangular Configuration

Authors: Shams Ul Islam, Chao Ying Zhou, Farooq Ahmad

Abstract:

A two-dimensional numerical simulation of crossflow around four cylinders in an in-line rectangular configuration is studied by using the lattice Boltzmann method (LBM). Special attention is paid to the effect of the spacing between the cylinders. The Reynolds number ( Re ) is chosen to be e 100 R = and the spacing ratio L / D is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. Results show that, as in the case of four cylinders in an inline rectangular configuration , flow fields show four different features depending on the spacing (single square cylinder, stable shielding flow, wiggling shielding flow and a vortex shedding flow) are observed in this study. The effects of spacing ratio on physical quantities such as mean drag coefficient, Strouhal number and rootmean- square value of the drag and lift coefficients are also presented. There is more than one shedding frequency at small spacing ratios. The mean drag coefficients for downstream cylinders are less than that of the single cylinder for all spacing ratios. The present results using the LBM are compared with some existing experimental data and numerical studies. The comparison shows that the LBM can capture the characteristics of the bluff body flow reasonably well and is a good tool for bluff body flow studies.

Keywords: Four square cylinders, Lattice Boltzmann method, rectangular configuration, spacing ratios, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
379 Design and Simulation of Portable Telemedicine System for High Risk Cardiac Patients

Authors: V. Thulasi Bai, Srivatsa S. K.

Abstract:

Deaths from cardiovascular diseases have decreased substantially over the past two decades, largely as a result of advances in acute care and cardiac surgery. These developments have produced a growing population of patients who have survived a myocardial infarction. These patients need to be continuously monitored so that the initiation of treatment can be given within the crucial golden hour. The available conventional methods of monitoring mostly perform offline analysis and restrict the mobility of these patients within a hospital or room. Hence the aim of this paper is to design a Portable Cardiac Telemedicine System to aid the patients to regain their independence and return to an active work schedule, there by improving the psychological well being. The portable telemedicine system consists of a Wearable ECG Transmitter (WET) and a slightly modified mobile phone, which has an inbuilt ECG analyzer. The WET is placed on the body of the patient that continuously acquires the ECG signals from the high-risk cardiac patients who can move around anywhere. This WET transmits the ECG to the patient-s Bluetooth enabled mobile phone using blue tooth technology. The ECG analyzer inbuilt in the mobile phone continuously analyzes the heartbeats derived from the received ECG signals. In case of any panic condition, the mobile phone alerts the patients care taker by an SMS and initiates the transmission of a sample ECG signal to the doctor, via the mobile network.

Keywords: WET, ECG analyzer, Bluetooth, mobilecellular network, high risk cardiac patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
378 Effect of Scarp Topography on Seismic Ground Motion

Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song

Abstract:

Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.

Keywords: Scarp topography, ground motion, amplification factor, vertical incident wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
377 Implementing ALD in Product Development: The Effect of Geometrical Dimensions on Tubular Member Deformation

Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Tadayuki Kyoutani, Dai-Heng Chen, Ken Kaminishi

Abstract:

The product development process has undergone many changes concomitant with world progress in order to produce products that meet customer needs quickly and inexpensively. Analysis-Led Design (ALD) is one of the latest methods in the product development process. It focuses more on up-front engineering, a product quality optimization process that starts early in the conceptual design stage. Product development and manufacturing through ALD utilizes digital tools extensively for design, analysis and product optimization. This study uses computer-aided design (CAD) and finite element method (FEM) simulation to examine the modes of deformation of tubular members under axial loading. A multiple-combination impact absorption tubular member, referred to as a compress–expand member, is proposed as a substitute for the conventional thin-walled cylindrical tube to be used as a vehicle’s crash box. The study of deformation modes is crucial for evaluating the geometrical dimension limits by which a member can absorb energy efficiently.

Keywords: Analysis-led design, axial collapse, tubular member, finite element method, thin-walled cylindrical tube, compress-expand member, deformation modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
376 Ranking of Inventory Policies Using Distance Based Approach Method

Authors: Gupta Amit, Kumar Ramesh, Tewari P. C.

Abstract:

Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies economic order quantity (EOQ), just in time (JIT), vendor managed inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies.

Keywords: Inventory Policy, Ranking, DBA, Selection criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
375 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati

Abstract:

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
374 GIS-based Non-point Sources of Pollution Simulation in Cameron Highlands, Malaysia

Authors: M. Eisakhani, A. Pauzi, O. Karim, A. Malakahmad, S.R. Mohamed Kutty, M. H. Isa

Abstract:

Cameron Highlands is a mountainous area subjected to torrential tropical showers. It extracts 5.8 million liters of water per day for drinking supply from its rivers at several intake points. The water quality of rivers in Cameron Highlands, however, has deteriorated significantly due to land clearing for agriculture, excessive usage of pesticides and fertilizers as well as construction activities in rapidly developing urban areas. On the other hand, these pollution sources known as non-point pollution sources are diverse and hard to identify and therefore they are difficult to estimate. Hence, Geographical Information Systems (GIS) was used to provide an extensive approach to evaluate landuse and other mapping characteristics to explain the spatial distribution of non-point sources of contamination in Cameron Highlands. The method to assess pollution sources has been developed by using Cameron Highlands Master Plan (2006-2010) for integrating GIS, databases, as well as pollution loads in the area of study. The results show highest annual runoff is created by forest, 3.56 × 108 m3/yr followed by urban development, 1.46 × 108 m3/yr. Furthermore, urban development causes highest BOD load (1.31 × 106 kgBOD/yr) while agricultural activities and forest contribute the highest annual loads for phosphorus (6.91 × 104 kgP/yr) and nitrogen (2.50 × 105 kgN/yr), respectively. Therefore, best management practices (BMPs) are suggested to be applied to reduce pollution level in the area.

Keywords: Cameron Highlands, Land use, Non-point Sources of Pollution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
373 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
372 Assessment of Energy Demand Considering Different Model Simulations in a Low Energy Demand House

Authors: M. Cañada-Soriano, C. Aparicio-Fernández, P. Sebastián Ferrer Gisbert, M. Val Field, J.-L. Vivancos-Bono

Abstract:

The lack of insulation along with the existence of air leakages constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, the Blower Door test can be used. It is a standardized procedure that determines the airtightness of a space by characterizing the rate of air leakages through the envelope surface. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place such as the infrared thermography. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house, refurbished under the Passive House standard, using the Blower Door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to estimate the energy demand in different scenarios. In this sense, a sequential implementation of three different energy improvement measures (insulation thickness, glazing type and infiltrations) have been analyzed.

Keywords: Airtightness, blower door, TRNSYS, infrared thermography, energy demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168
371 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital

Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis

Abstract:

Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.

Keywords: Energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
370 Decision Support System for Flood Crisis Management using Artificial Neural Network

Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi

Abstract:

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Keywords: Decision Support System, Neural Network, Flood Level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
369 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.

Keywords: Circular shear panel damper, FE analysis, Hysteretic behavior, Large deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
368 Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs

Authors: Chuan-Ching Sue, Shi-Zhou Chen, Ting-Yu Huang

Abstract:

Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.

Keywords: EPON, Inter-ONU and Intra-ONU scheduling, Prediction, Unused slot remainder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
367 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
366 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.

Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
365 Energy Saving Potential with Improved Concrete in Ice Rink Floor Designs

Authors: Ehsan B. Haghighi, Pavel Makhnatch, Jörgen Rogstam

Abstract:

The ice rink floor is the largest heat exchanger in an ice rink. The important part of the floor consists of concrete, and the thermophysical properties of this concrete have strong influence on the energy usage of the ice rink. The thermal conductivity of concrete can be increased by using iron ore as ballast. In this study, the Transient Plane Source (TPS) method showed an increase up to 58.2% of thermal conductivity comparing the improved concrete to standard concrete. Moreover, two alternative ice rink floor designs are suggested to incorporate the improved concrete. A 2D simulation was developed to investigate the temperature distribution in the conventional and the suggested designs. The results show that the suggested designs reduce the temperature difference between the ice surface and the brine by 1-4˚C, when comparing with convectional designs at equal heat flux. This primarily leads to an increased coefficient of performance (COP) in the primary refrigeration cycle and secondly to a decrease in the secondary refrigerant pumping power. The suggested designs have great potential to reduce the energy usage of ice rinks. Depending on the load scenario in the ice rink, the saving potential lies in the range of 3-10% of the refrigeration system energy usage. This calculation is based on steady state conditions and the potential with improved dynamic behavior is expected to increase the potential saving.

Keywords: Concrete, iron ore, ice rink, energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
364 Test of Moisture Sensor Activation Speed

Authors: I. Parkova, A. Vališevskis, A. Viļumsone

Abstract:

Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioral and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behavior and moisture detection speed of woven and sewn sensors were compared by analyzing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.

Keywords: Conductive yarns, moisture textile sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
363 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
362 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.

Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
361 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography

Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi

Abstract:

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.

Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
360 Analysis on the Game-Playing Tendency of SNGs (Social Network Games) users by Gender

Authors: Jooyeon Yook, Wonjun Ko

Abstract:

As the Social network game(SNG) is rising dramatically worldwide, an interesting aspect has appeared in the demographic analysis. That is the ratio of the game users by gender. Although the ratio of male and female users in online game was 60:40% previously, the ratio of male and female users in SNG stood at 47:53% which shows that the ratio of female users is higher than that of male users. Here, it should be noted that 35% in those 53% female users are the first-time users of game. This fact suggests that women who were not interested in game previously has taken an interest in SNG. Notwithstanding this issue, there have been little studies on the female users of SNG although there are many studies that analyzed the tendency of female users- online game play. This study conducted the analyzed how the game-playing tendency of SNG gamers was manifested in the game by gender. For that, this study will identify the tendency of SNG users by gender based on the preceding studies that analyzed the online game users by gender. The subject of this study was confined to the farm and urban construction simulation games which were offered based on the mobile application platform. Regarding the methodology of study, the first focus group interview(FGI) was conducted with the male and female users who had played games on Social network service(SNS) until recently. Later, the second one-on-one in-depth interview was conducted to gain an insight into the psychological state of the subjects.

Keywords: Social network Game, Gender, Play inclination, Game psychology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
359 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042
358 Design of Direct Power Controller for a High Power Neutral Point Clamped Converter Using Real Time Simulator

Authors: Amin Zabihinejad, Philippe Viarouge

Abstract:

In this paper, a direct power control (DPC) strategies have been investigated in order to control a high power AC/DC converter with time variable load. This converter is composed of a three level three phase neutral point clamped (NPC) converter as rectifier and an H-bridge four quadrant current control converter. In the high power application, controller not only must adjust the desire outputs but also decrease the level of distortions which are injected to the network from the converter. Regarding to this reason and nonlinearity of the power electronic converter, the conventional controllers cannot achieve appropriate responses. In this research, the precise mathematical analysis has been employed to design the appropriate controller in order to control the time variable load. A DPC controller has been proposed and simulated using Matlab/ Simulink. In order to verify the simulation result, a real time simulator- OPAL-RT- has been employed. In this paper, the dynamic response and stability of the high power NPC with variable load has been investigated and compared with conventional types using a real time simulator. The results proved that the DPC controller is more stable and has more precise outputs in comparison with conventional controller.

Keywords: Direct Power Control, Three Level Rectifier, Real Time Simulator, High Power Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
357 A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty

Authors: S. Z. Sayed Hassen

Abstract:

The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.

Keywords: Robust control, power system, integral action, minimax LQG control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
356 Kinematic Modeling and Workspace Analysis of a Spatial Cable Suspended Robot as Incompletely Restrained Positioning Mechanism

Authors: Jahanbakhsh Hamedi, Hassan Zohoor

Abstract:

This article proposes modeling, simulation and kinematic and workspace analysis of a spatial cable suspended robot as incompletely Restrained Positioning Mechanism (IRPM). These types of robots have six cables equal to the number of degrees of freedom. After modeling, the kinds of workspace are defined then an statically reachable combined workspace for different geometric structures of fixed and moving platform is obtained. This workspace is defined as the situations of reference point of the moving platform (center of mass) which under external forces such as weight and with ignorance of inertial effects, the moving platform should be in static equilibrium under conditions that length of all cables must not be exceeded from the maximum value and all of cables must be at tension (they must have non-negative tension forces). Then the effect of various parameters such as the size of moving platform, the size of fixed platform, geometric configuration of robots, magnitude of applied forces and moments to moving platform on workspace of these robots with different geometric configuration are investigated. Obtained results should be effective in employing these robots under different conditions of applied wrench for increasing the workspace volume.

Keywords: Kinematic modeling, applied wrench, workspace, cable based robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
355 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: Hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575