Search results for: time-dependent boundary condition
1485 Exact Solution of Some Helical Flows of Newtonian Fluids
Authors: Imran Siddique
Abstract:
This paper deals with the helical flow of a Newtonian fluid in an infinite circular cylinder, due to both longitudinal and rotational shear stress. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms and satisfy all imposed initial and boundary conditions. For large times, these solutions reduce to the well-known steady-state solutions.Keywords: Newtonian fluids, Velocity field, Exact solutions, Shear stress, Cylindrical domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581484 Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor
Authors: M. Khatami Rad, N. Jamali, M. Torabizadeh, A. Noshadi
Abstract:
In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.Keywords: Condition based monitoring, expert system, neural network, fault detection, vibration monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891483 Analysis Fraction Flow of Water versus Cumulative Oil Recoveries Using Buckley Leverett Method
Authors: Reza Cheraghi Kootiani, Ariffin Bin Samsuri
Abstract:
To derive the fractional flow equation oil displacement will be assumed to take place under the so-called diffusive flow condition. The constraints are that fluid saturations at any point in the linear displacement path are uniformly distributed with respect to thickness; this allows the displacement to be described mathematically in one dimension. The simultaneous flow of oil and water can be modeled using thickness averaged relative permeability, along the centerline of the reservoir. The condition for fluid potential equilibrium is simply that of hydrostatic equilibrium for which the saturation distribution can be determined as a function of capillary pressure and therefore, height. That is the fluids are distributed in accordance with capillary-gravity equilibrium. This paper focused on the fraction flow of water versus cumulative oil recoveries using Buckley Leverett method. Several field cases have been developed to aid in analysis. Producing watercut (at surface conditions) will be compared with the cumulative oil recovery at breakthrough for the flowing fluid.Keywords: Fractional Flow, Fluid Saturations, Permeability, Cumulative Oil Recoveries, Buckley Leverett Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92531482 Production Optimization through Ejector Installation at ESA Platform Offshore North West Java Field
Authors: Arii Bowo Yudhaprasetya, Ario Guritno, Agus Setiawan, Recky Tehupuring, Cosmas Supriatna
Abstract:
The offshore facilities condition of Pertamina Hulu Energi Offshore North West Java (PHE ONWJ) varies greatly from place to place, depending on the characteristics of the presently installed facilities. In some locations, such as ESA platform, gas trap is mainly caused by the occurrence of flash gas phenomenon which is known as mechanical-physical separation process of multiphase flow. Consequently, the presence of gas trap at main oil line would accumulate on certain areas result in a reduced oil stream throughout the pipeline. Any presence of discrete gaseous along continuous oil flow represents a unique flow condition under certain specific volume fraction and velocity field. From gas lift source, a benefit line is used as a motive flow for ejector which is designed to generate a syphon effect to minimize the gas trap phenomenon. Therefore, the ejector’s exhaust stream will flow to the designated point without interfering other systems.Keywords: Ejector, diffuser, multiphase flow, syphon effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9651481 Localized Non-Stability of the Semi-Infinite Elastic Orthotropic Plate
Authors: Reza Sharifian, Vagharshak Belubekyan
Abstract:
This paper is concerned with an investigation into the localized non-stability of a thin elastic orthotropic semi-infinite plate. In this study, a semi-infinite plate, simply supported on two edges and different boundary conditions, clamped, hinged, sliding contact and free on the other edge, are considered. The mathematical model is used and a general solution is presented the conditions under which localized solutions exist are investigated.Keywords: Localized, Non-stability, Orthotropic, Semi-infinite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11811480 Positive Solutions for Three-Point Boundary Value Problems of Third-Order Nonlinear Singular Differential Equations in Banach Space
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for singular differential equation in Banach space, which improved and generalize the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14721479 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.
Keywords: Biomagnetic fluid, FHD, nonlinear stretching sheet, slip parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8211478 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications
Authors: V. V. Reddy, N. V. S. N. Sarma
Abstract:
A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x- axis, yaxis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel polyfractal antenna are demonstrated.
Keywords: Circular polarization, Fractal, Koch, Minkowski.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25061477 The Effect of Body Condition Score on Hormonal and Vaginal Histological Changes During Estrus of Synchronized Etawah Cross Bred Does
Authors: Diah Tri Widayati, Sunendar, Kresno Suharto, Pudji Asuti, Aris Junaid
Abstract:
Eight Etawah cross bred does were divided into two groups based on body condition score (BCS). Group I (BSC 2, body weight 25-30 kg; n = 4), and Group II (BSC 3, body weight, 35-40 kg, n=4). All does received intravaginal controlled internal drug release devices (CIDR) for 10 days, and a prostaglandin F2α at 48 h before CIDR removal. Estrus detection was carried out using vasectomized buck. Vaginal epithelium was taken to determine estrus cycle. Blood samples were taken every 3-6 hours, started from moment of CIDR removal until the end of estrus. The results showed vaginal histological indicated estrus occurred at the hours of 25 to 60 and 30 to 70 post CIDR removal in BCS 2 and 3, respectively. Progesterone peak of BCS 2 and BCS 3 were 0.18±0.31 and 0.48±0.31 ng/mL on the hour 0 post CIDR removal. Estradiol -17ß peak of each group was 53.25±35.08 and 89.91±92.84 pg/mL at 48 post CIDR removal. LH surge only occurred on BCS 3 groups, the LH concentrations were 9.9± 9.1; 4.5± 4.0; and 18.2± 9.1 ng/mL at 45, 48 and 51 hours post CIDR removal, respectively. It was concluded that the BCS had effects on vaginal histological changes and LH surge.Keywords: Estrus synchronization, Vaginal histological changes, Progesterone, Estradiol -17ß , LH
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18771476 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading
Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam
Abstract:
A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.
Keywords: Cyclic compression, ferrocement, masonry wall, partially reversed cyclic load, retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9211475 Decolorization and COD Removal of Palm Oil Mill Wastewater by Electrocoagulation
Authors: K. Sontaya, B. Pitiyont, V. Punsuvon
Abstract:
The objective of this study is to investigate the performance of the electrocoagulation process for color and COD removal in palm oil wastewater using a 10 L batch reactor. Iron was used as electrodes and the distance between electrodes was 2 cm. The effects of operating parameters: current voltage (6, 12 and 18 volt), reaction time (5, 15, 30, 45 and 60 min) and initial pH (4 and 9) of treatment efficiency were examine. The result showed that decolorization and COD removal efficiency increased with the increase in current voltage and reaction time. The proper condition for decolorization achieved at initial pH 4 and 9 were current voltage of 12 volt, reaction time 30 min. The decolorization efficiency reached 90.4% and 88.9%, respectively. COD removal was achiveved at current voltage 12 volt, reaction time 15 min. COD removal efficiency was 89.2 % and 83.0%, respectively. From the results, to show electrocoagulation process can treat palm oil mill wastewater in both acidic and basic condition at high efficiency for color and COD removal. Consequently, electrocoagulation process can be used or applied as a post-treatment step to improve the quality of the final discharge in term of color and residual COD removal.
Keywords: COD removal, decolorizaton, electrocoagulation, iron electrode, palm oil mill wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31761474 Acceleration Analysis of a Rotating Body
Authors: R. Usubamatov
Abstract:
The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.
Keywords: acceleration analysis, kinematics of mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26951473 QR Technology to Automate Health Condition Detection Payment System: A Case Study in Schools of the Kingdom of Saudi Arabia
Authors: Amjad Alsulami, Farah Albishri, Kholod Alzubidi, Lama Almehemadi, Salma Elhag
Abstract:
Food allergy is a common and rising problem among children. Many students have their first allergic reaction at school, one of these is anaphylaxis, which can be fatal. This study discovered that several schools' processes lacked safety regulations and information on how to handle allergy issues and chronic diseases like diabetes where students were not supervised or monitored during the cafeteria purchasing process. Academic institutions have no obvious prevention or effort when purchasing food containing allergens or negatively impacting the health status of students who suffer from chronic diseases. The stability of students' health must be maintained because it greatly affects their performance and educational achievement. To address this issue, this paper uses a business reengineering process to propose the automation of the whole food-purchasing process, which will aid in detecting and avoiding allergic occurrences and preventing any side effects from eating foods that are conflicting with students' health. This may be achieved by designing a smart card with an embedded QR code that reveals which foods cause an allergic reaction in a student. A survey was distributed to determine and examine how the cafeteria will handle allergic children and whether any management or policy is applied in the school. Also, the survey findings indicate that the integration of QR technology into the food purchasing process would improve health condition detection. The family supported that the suggested solution would be advantageous because it ensured their children avoided eating not allowed food. Moreover, by analyzing and simulating the as-is process and the suggested process, the results demonstrate that there is an improvement in quality and time.
Keywords: QR code, smart card, food allergies, Business Process reengineering, health condition detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551472 PM Electrical Machines Diagnostic - Methods Selected
Authors: M. Barański
Abstract:
This paper presents a several diagnostic methods designed to electrical machinesespecially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives.Thosemethodsare preferred by the author in periodic diagnostic of electrical machines. The special attentionshould be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methodswere createdinInstitute of Electrical Drives and MachinesKomel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.
Keywords: Electrical vehicle, generator, main insulation, permanent magnet, thermography, turn-to- traction drive, turn insulation, vibrations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26321471 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis
Abstract:
In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42961470 Some Peculiarities of Growth and Functional Activity of Escherichia coli Strain from Probiotic Formula “ASAP“
Authors: Marine A. Balayan, Susanna S. Mirzabekyan, Marine Isajanyan, Zaven S. Pepoyan, Аrmen H. Trchounian, Аstghik Z. Pepoyan, Helena Bujdakova
Abstract:
It has been shown that pH 7,3 and 37 0C are the optimal condition for the growth of E. coli “ASAP". The cells grow well on Glucose, Lactose, D-Mannitol, D-Sorbitol, (+)-Xylose, L- (+)-Arabinose and Dulcitol. No growth has been observed on Sucrose, Inositol, Phenylalanine, and Tryptophan. The strain is sensitive to a range of antibiotics. The present study has demonstrated that E. coli “ASAP" inhibit the growth of S. enterica ATCC #700931 in vitro. The studies on conjugating activity has revealed no conjugant of E. coli “ASAP" with plasmid strains E. coli G35#59 and S. enterica ATCC #700931. On the other hand, the conjugants with low frequencies were obtained from E. coli “ASAP" with E. coli G35#61, and E. coli “ASAP" with randomly chosen isolate from healthy human gut microflora: E. coli E6. The results of present study have demonstrated improvements in gut microflora condition of patients with different diseases after the administration of “ASAP"
Keywords: E. coli, ASAP, Probiotic formula, gut microflora.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17701469 Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (k) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (F) to improve the corresponding value of permeability coefficient. The value of k will be correlated with the value of volumetric water content (θ) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10-4 cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results.Keywords: Constant discharge, geometric factor, permeability coefficient, unsaturated soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15251468 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: Ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21891467 ROSA/LSTF Separate Effect Test on Natural Circulation under High Core Power Condition of Pressurized Water Reactor
Authors: Takeshi Takeda
Abstract:
A separate effect test (SET) simulated natural circulation (NC) under high core power condition of a pressurized water reactor (PWR) utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility). The LSTF test results clarified the relationship between the primary loop mass inventory and the primary loop mass flow rate being dependent on the NC mode at a constant core power of 8% of the volumetric-scaled PWR nominal power. When the core power was 9% or more during reflux condensation, large-amplitude level oscillation in a form of slow fill and dump occurred in steam generator (SG) U-tubes. At 11% core power during reflux condensation, intermittent rise took place in the cladding surface temperature of simulated fuel rods. The RELAP5/MOD3.3 code indicated the insufficient prediction of the SG U-tube liquid level behavior during reflux condensation.Keywords: LSTF, natural circulation, core power, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8511466 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation
Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita
Abstract:
In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.
Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30751465 Periodic Control of a Wastewater Treatment Process to Improve Productivity
Authors: Muhammad Rizwan Azhar, Emadadeen Ali
Abstract:
In this paper, periodic force operation of a wastewater treatment process has been studied for the improved process performance. A previously developed dynamic model for the process is used to conduct the performance analysis. The static version of the model was utilized first to determine the optimal productivity conditions for the process. Then, feed flow rate in terms of dilution rate i.e. (D) is transformed into sinusoidal function. Nonlinear model predictive control algorithm is utilized to regulate the amplitude and period of the sinusoidal function. The parameters of the feed cyclic functions are determined which resulted in improved productivity than the optimal productivity under steady state conditions. The improvement in productivity is found to be marginal and is satisfactory in substrate conversion compared to that of the optimal condition and to the steady state condition, which corresponds to the average value of the periodic function. Successful results were also obtained in the presence of modeling errors and external disturbances.
Keywords: Dilution rate, nonlinear model predictive control, sinusoidal function, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22091464 Large-Eddy Simulations of Subsonic Impinging Jets
Authors: L. Nguyen, V. Golubev, R. Mankbadi
Abstract:
We consider here the subsonic impinging jet representing the flow field of a vertical take-off aircraft or the initial stage of rocket launching. Implicit Large-Eddy Simulation (ILES) is used to calculate the time-dependent flow field and the radiate sound pressure associated with jet impinging. With proper boundary treatments and high-order numerical scheme, the near field sound pressure is successfully obtained. Results are presented for both a rectangular as well a circular jet.Keywords: Aeroacoustics, Large-Eddy Simulations, Jets, Fluid Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21921463 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances
Authors: Muhammad Abdullah Arafat, Nahrin Nowrose
Abstract:
Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2% increase in average output power is obtained for 10% variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.
Keywords: Coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471462 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.
Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9081461 Modeling of Temperature Fields of Gas Turbine Blades by Considering Heat Flow and Specified Temperature
Authors: C. Ardil
Abstract:
A new mathematical model for calculating the temperature field of the profile part of the cooled blades of gas turbines is developed. The theoretical substantiation of the method is based on the application of the method of potential theory (the method of boundary integral equations). The effectiveness of the implementation of the developed mathematical model is confirmed on the basis of a computational experiment.Keywords: Modeling of temperature fields, gas turbine blades, integral methods, cooled blades, gas turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6611460 Positive Solutions for Boundary Value Problems of Fourth-Order Nonlinear Singular Differential Equations in Banach Space
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special non-empty closed convex set and utilizing M¨onch fixed point theory, we investigate the existence of solution for a class of fourth-order singular differential equation in Banach space, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751459 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud
Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova
Abstract:
Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.
Keywords: Cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8751458 Study of Damage in Beams with Different Boundary Conditions
Authors: Nilson Barbieri, Renato Barbieri
Abstract:
–In this paper the damage in clamped-free, clampedclamped and free-free beam are analyzed considering samples without and with structural modifications. The damage location is investigated by the use of the bispectrum and wavelet analysis. The mathematical models are obtained using 2D elasticity theory and the Finite Element Method (FEM). The numerical and experimental data are approximated using the Particle Swarm Optimizer (PSO) method and this way is possible to adjust the localization and the severity of the damage. The experimental data are obtained through accelerometers placed along the sample. The system is excited using impact hammer.Keywords: Damage, beam, PSO, bispectrum, wavelet transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17681457 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy
Authors: M. Veeresham
Abstract:
The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.
Keywords: Refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6791456 Geophysical Investigation of Abnormal Seepages in Goronyo Dam Sokoto, North Western Nigeria Using Self-Potential Method
Authors: A. I. Augie, M. Saleh, A. A. Gado
Abstract:
In this research, Self-Potential (SP) method was employed to locate anomalous electrical conductivity located in Goronyo area and also to determine the condition of the embankment of the dam. SP data were plotted against distance along with the profile and spacing of electrode using surfer software (version 12). High and low zones of SP values were identified along the right and left abutments of the dam reservoir. The regions with high SP values were described to be high tendency of fluid flow associate with wet sandy soil. These zones have the SP values ranging from 200 mV and above. High SP values were due to the high moisture content that may lead to the seepage of water leaking through this zone. The zones with high SP values occupied Profiles S1, S2, S3, S4 and S5 indicating the presence of potential seepage paths within the subsurface of the embankment. These regions of seepage were identified as weak zones and potential pathways through which water could be lost from the dam reservoir. The SP values for the regions range from 250 m to 400 m (S1), 306 m to 400 m (S2), 192 m to 400 m (S3), 48 m to 200 m (S4) and 7 m to 170 m (S5) with their corresponding maximum depths of 30 m, 28 m, 28 m, 30 m and 26 m respectively. However, zones of low SP values in the overburden were observed which shows the presence of intact regions, which may be due to the compactness and dryness around the dam. The weak zones were considered as geological features (such as fractures, joints, and faults) that have undermined the integrity of the dam structure, which has led to the abnormal seepage.
Keywords: Self-potential, subsurface, seepage, condition and dam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690