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I. INTRODUCTION

THE singular differential equation arises in a variety of
applied mathematics and physics, the theory of singular

differential equation is emerging as an important area of
investigation since it is much richer than the corresponding
theory of concerning equation without singular. The beam of
Sandwich{

x′′′(t) − λf(t, x(t)) = 0, t ∈ (0, 1),
x(0) = x′(η) = x′′(1) = 0,

is a singular problem in special exogenic action. In recent
years, some new results concerning the three-point boundary
value problems of three-order nonlinear singular differen-
tial equations have been obtained by a variety of method
(see[1 − 4]). In 1998, D.Anderson[5] got the existence of
solution when f(t, x) = f(x) and f : [0,+∞) → [0,+∞). In
2003, yao[6] got the existence of at least one positive solution
when f(t, x) is semipositone and superlinear. However the
thesis above mentioned are all not consider the case of
singularity of f(t, x). In 2004, Yu [7] got the existence of
multi-positive solution when λ = 1 and f is super linearity and
inferior linearity in real space. Motivated by the work of thesis
[8], the present paper investigates the existence of positive
solution for a class of three-point boundary value problems of
three-order nonlinear singular differential equations in Banach
Space. Compared with the paper above mentioned, this paper
has different characters. Firstly, the result is more generally.
Secondly, our approaches are method of fixed point theory
and a new constructed cone, this is different with thesis
above mentioned completely. Lastly, we obtained the result
in abstract space. The organization of this paper is as follows,
we shall introduce some definitions and lemmas in the rest
of this section. The main result will be stated and proved in
section 2.

Suppose (E, ‖.‖) is a Banach space, I = [0, 1], J = (0, 1),
P is a normal cone in E, let the normal constant be N , P ∗ is
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a dual cone of P , the partial order induced by cone P in E
is ≤: x ≤ y ⇔ y−x ∈ P, we consider the following problem{

x′′′(t) + a(t)f(x(t)) = θ, t ∈ (0, 1),
x(0) = x′(η) = x′′(1) = θ, 1

2 < η < 1,
(1)

where a(t) ∈ C([0, 1], [0,+∞)), for any small subinterval
[α, β] ⊂ I , a(t) 	= 0, θ is zero element in E, f(x) may be
singular at x = 0.

We consider problem (1) in C[I, E]. For any x ∈
C[I, E], let ‖x‖c = max

t∈J
‖x(t)‖, then (C[I, E], ‖.‖c)

is a Banach space. A map x ∈ C[I, E]
⋂

C1[(0, 1], E]⋂
C2[(0, 1], E]

⋂
C3[J,E] is called a solution of (1.1) if it

satisfies all equations of (1); if x(t) > θ, t ∈ (0, 1), we call x
is positive solution.

We denote α the Kuratowski noncompactness measure,
α(.) and αc(.) are the Kuratowski noncompactness measure
in E and C[I, E] respectively.

Let G(t, s) be the Green function of the following equation:{
x′′′(t) = 0, t ∈ (0, 1),
x(0) = x′(η) = x′′(1) = 0,

then

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

ts − 1
2 t2, 0 ≤ s ≤ η, 0 ≤ t ≤ s,

1
2s2, 0 ≤ s ≤ η, 0 ≤ s ≤ t,
ηt − 1

2 t2, η ≤ s ≤ 1, 0 ≤ t ≤ s,
1
2s2 − ts + ηt, η ≤ s ≤ 1, 0 ≤ s ≤ t,

We first list some properties of the Green function.
(1) G(t, s) ≥ 0,∀t, s ∈ [0, 1].

(2) max
t∈I

G(t, s) = J(s) =
{

1
2s2, 0 ≤ s ≤ η,
1
2η2, η ≤ s ≤ 1.

(3) 1
2 ≥ G(t, s) ≥ q(t)J(s) ≥ q(t)G(τ, s)

where q(t) =
{

ηt, 0 ≤ t ≤ η,
2ηt(1 − t), η ≤ t ≤ 1,

is nonnegative con-

vex function in I .
We define the operator T :

Tv(t) =
∫ 1

0

G(t, s)a(s)v(s)ds, v ∈ C[I, R], (2)

where G(t, s) and a(s) are same to above mentioned. For the
convenience sake, we list some lemmas and conditions:

lemma 1.1[9] Suppose T : C[I, R] → C[I, R] is
a completely continuous and positive operator, there exists
v0 ∈ Q1 = {v ∈ C[I, R] | v(t) ≥ 0,∀t ∈ [0, 1]} with
v0 	= θ such that λ1Tv0 = v0(λ1 > 0), for any v ∈ Q1 \ {θ},
there exists natural number n = n(v) and real number
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α0(v) > 0, β0(v) > 0 such that α0v ≤ Tnv ≤ β0v. For
∀v ∈ Q1, if v 	= μv0(μ ≥ 0), then λ1Tv � v, λ1Tv � v.

Remark The operator T defined by (2) satisfied all
conditions of lemma 1.1. λ1 = (r(T ))−1 is the first eigenvalue
of T , T has no other positive eigenfunction except one
corresponding to λ1.

Lemma 1.2[10] Suppose K is a cone in real Banach
space, R > r > 0,Kr,R = {x ∈ K|r ≤‖ x ‖≤ R}. If
A : Kr,R → K is a strictly set contraction, and satisfied one
of the following two cases:

Ax � x,∀x ∈ K, ‖x‖ = r;Ax � x∀x ∈ K, ‖x‖ = R,

or

Ax � x,∀x ∈ K, ‖x‖ = r;Ax � x,∀x ∈ K, ‖x‖ = R,

then A has at least one fixed point in Kr,R.
(H1) f ∈ C[P, P ], for any r > 0, f is uniformly contin-

uous on P
⋂

Br, where Br = {x ∈ E|‖x‖ ≤ r}, there exists
a constant Lr such that α(f(D)) ≤ Lrα(D),∀D ⊂ P

⋂
Br,

where Lr : 0 ≤ Lr ≤ 1
2 max a(t) .

(H2) For x > θ, there exists ϕ ∈ P ∗ such that ϕ(x) > 0,

if x ∈ P then lim inf
‖x‖→+∞

ϕ(f(x))
ϕ(x)

> λ1, where λ1 is the first

eigenvalue of the operator T .

(H3) If x ∈ P, then lim sup
‖x‖→0

‖f(x)‖
‖x‖ <

λ1

N
.

(H4) If x ∈ P , then lim sup
‖x‖→+∞

‖ f(x) ‖
‖ x ‖ <

λ1

N
.

(H5) For x > θ, there exist ϕ ∈ P ∗ such that ϕ(x) > 0,

if x ∈ P then lim inf
‖x‖→0

ϕ(f(x))
ϕ(x)

> λ1.

(H6) There exist r0 > 0 such that sup{‖ f(x) ‖| x ∈
P, ‖ x ‖≤ r0} <

2r0

N
(
∫ 1

0

a(s)ds)−1.

(H7) For x > θ, there exist r0 > 0 and ϕ ∈ P ∗ with
‖ϕ‖ = 1 such that ϕ(x) > 0, moreover if q(t)r0 ≤‖ x ‖≤ r0

then ϕ(f(x)) > αr0, where α = {C
∫ 1−τ

τ

J(s)a(s)ds}−1,

C = {ητ, 2ητ2}max.

II. CONCLUSION

We consider the equivalent problem of (1)

Ax(t) =
∫ 1

0

G(t, s)a(s)f(x(s))ds (3)

Let Q = {x(t) ∈ C[I, E]|x(t) ≥ θ, t ∈ I}, then Q is cone
in C[I, E]. By the continuity of G(t, s) and f, we can get
A : Q → Q is continuous. Similar to the boundary value prob-
lem of ordinary differential equation in scalar space, we can
get the problem (1.1) has solution in C[I, E]

⋂
C1[(0, 1], E]⋂

C2[(0, 1], E]
⋂

C3[J,E] if and only if (Ax)(t) = x(t) has
fixed point, so we only need to show A has at least one
nontrivial fixed point.

In order to the overcome the difficulty caused by singularity,
we construct a cone

K = {x ∈ Q | x(t) ≥ q(t) ‖ x ‖,∀t ∈ I} (4)

obviously K is a cone in E and K ⊂ Q.
Next we show AK ⊂ K, i.e. A is a self-mapping in K. By

the property of G(t, s), we can get

Ax(t) =
∫ 1

0

G(t, s)a(s)f(x(s))ds)

≤
∫ 1

0

J(s)a(s)f(x(s))ds, ∀t ∈ I,

so

‖ Ax(t) ‖≤
∫ 1

0

J(s)a(s)f(x(s))ds.

If x ∈ K, then

Ax(t) =
∫ 1

0

G(t, s)a(s)f(x(s))ds)

≥ q(t)
∫ 1

0

J(s)a(s)f(x(s))ds

≥ q(t) ‖ Ax(t) ‖,
so AK ⊂ K. Note that 0 < G(t, s) < 1

2 , similar to the proof
of lemma in thesis [11], for ∀r > 0, we can show A : Kr → K
is a strictly set contraction, where Kr = {x ∈ K : ‖x‖c < r}.
Base the work upon the preliminary, we give the following
theorem:

Theorem 2.1 Suppose conditions (H1) − (H3) hold, or
conditions (H1), (H4), (H5) hold, the problem (1) has at least
one fixed point.

Proof We first suppose (H1)−(H3) are satisfied. By (H3)
it is easy to see there exist r1 : 0 < r1 < 1 and ε : 0 < ε < λ1

such that

‖f(x)‖ ≤ λ1 − ε

N
‖x‖,∀x ∈ P, ‖x‖ ≤ r1, (5)

where N is the regular constant of cone P , now we show

Ax � x,∀x ∈ K, ‖x‖ = r1. (6)

In fact, if there exist x1 ∈ K with ‖x1‖c = r1 such that
Ax1 ≥ x1, then we have θ ≤ x1(t) ≤ (Ax1)(t), t ∈ I. Let
v1(t) =‖ x1(t) ‖, then v1(t) ∈ C[I, R], by the regularity of
cone and ( 3 ), we can get

v1(t) =‖ x1(t) ‖
≤ N

∫ 1

0

G(t, s)a(s) ‖ f(x1(s)) ‖ ds

≤ (λ1 − ε)
∫ 1

0

G(t, s)a(s) ‖ x1(s) ‖ ds

= (λ1 − ε)(Tv1)(t),
so

v1(t) ≤ (λ1 − ε)(Tv1)(t), t ∈ [0, 1]. (7)

Next we show v1(t) ≡ 0, t ∈ [0, 1]. If this is not true, then
v1(t) 	= 0, t ∈ [0, 1], note that v1(t) ≥ 0, t ∈ [0, 1], so v1(t) ≤
(λ1 − ε)n(Tnv1)(t), correspondingly

‖ Tn ‖≥ 1
‖v1(t)‖‖(T

nv1)(t)‖ ≥ 1
(λ1 − ε)n

, n = 1, 2, 3...,

According to Gelfand formula

r(T ) = lim
n→∞

n
√

‖Tn‖ ≥ lim
n→∞

n

√
1

(λ1 − ε)n
=

1
λ1 − ε

>
1
λ1

.
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This is in contradiction with r(T ) = 1
λ1

, so v1(t) ≡ 0, t ∈
[0, 1], but this is in contradiction with ‖ x1 ‖= r1, so (6)
hold. Let

(Tδv)(t) =
∫ 1−δ

δ

G(t, s)a(s)v(s)ds, v ∈ C[I, R],

where δ ∈ (0, 1
2 ), it is easy to see Tδ : C[I, R] → C[I, R]

is completely continuous and positive linear operator, it is
satisfied all conditions of lemma 1.1, so r(Tδ) > 0, λδ =
(r(Tδ))−1 is the first eigenvalue of Tδ , Tδ has no other
positive eigenfunction except one corresponding to λδ . Choose
δn ∈ (0, 1

2 )(n = 1, 2, ...) such that δ1 ≥ δ2 ≥ ... ≥ δn ≥ ...
with δn → 0(n → +∞). For m > n, v ∈ Q1, we have
Tδnv(t) ≤ Tδmv(t) ≤ Tv(t), t ∈ I, so r(Tδn) ≤ r(Tδm) ≤
r(T ). Let λδn

= (r(Tδn
))−1, so λδn

≥ λδn
≥ λ1, where λ1 is

the first eigenvalue defined by (2). Let lim
n→+∞λδn = λ̃1, now

we show λ̃1 = λ1.
We first show λ̃1 is eigenvalue of T . Let vδn

is a eigen-
function of operator Tδn

corresponding to the first eigenvalue
λδn

, and satisfied ‖vδn
‖ = 1, i.e.

vδn
(t) = λδn

∫ 1−δn

δn

G(t, s)a(s)vδn
(s)ds, (8)

since G(t, s) is uniformly continuous, we have {vδn} is
equicontinuous and uniformly bounded, by Arzela-Ascoli the-
orem, no loss of generality we assume vδn

(t) → ṽ0(t)(n →
+∞), so ṽ0 ∈ Q1 and ‖ṽ0‖ = 1, by (8) we have

ṽ0(t) = λ̃1

∫ 1

0

G(t, s)a(s)ṽ0(s)ds = λ̃1(T ṽ0)(t),

so λ̃1 is eigenvalue of T , notice that ṽ0 ∈ Q1 and Remark,
we have λ̃1 = λ1.

By (H2), there exist R1 > 1 and ε(0 < ε < λ1) such that

ϕ(f(x)) ≥ (λ1 + ε)ϕ(x), x ∈ P, ‖x‖ ≥ R1. (9)

According to previous discussion, there exist δ ∈ (0, 1
2 ) such

that λ1 ≤ λδ = (r(Tδ))−1 < λ1 + ε, take R2 = max{R1,
NR1
ηδ , NR1

2ηδ2 }, where N is normal constant of cone P , now we
show

Ax � x,∀x ∈ K, ‖x‖ = R2. (10)

In fact, if there exist x2 ∈ K with ‖x2‖ = R2 such that
Ax2 ≤ x2, then x2(t) ≥ q(t) ‖ x2 ‖,∀t ∈ I , P is normal,
so ‖x2(t)‖ ≥ q(t) ‖ x2 ‖≥ R1, t ∈ [δ, 1 − δ]. Let v2(t) =
ϕ(x2(t)), by (9),

v2(t) = ϕ(x2(t))
≥ ϕ((Ax2))(t)

= ϕ(
∫ 1

0

G(t, s)a(s)f(x2(s))ds)

≥
∫ 1−δ

δ

G(t, s)a(s)f(x2(s))ds

≥ (λ1 + ε)
∫ 1−δ

δ

G(t, s)a(s)ϕ(x2(s))ds

= (λ1 + ε)(Tδ)v2(t)

(11)

so v2(t) ≥ (λ1+ε)(Tδ)v2(t), t ∈ I, note that v2(t) ≥ 0, t ∈ I,
by lemma 1.1, there exist μ ≥ 0 such that v2 = μvδ , where

vδ is positive eigenfunction of operator Tδ corresponding to
the first eigenvalue λδ . If μ = 0, then v2(t) ≡ 0, so x2(t) ≡
0, this is in contradiction with ‖ x2 ‖= R2; If μ > 0, by
(11), μvδ = ϕ(x2) ≥ (λ1 + ε)(Tδ)ϕ(x2) = μ(λ1 + ε)(Tδ)vδ ,
so vδ ≥ (λ1 + ε)(Tδ)vδ , note that λδ < λ1 + ε, this is in
contradiction with vδ = λδTδvδ , so (10) is proved. To sum
up, by (6),(10) and lemma 1.2, A has a fixed point in Kr1,R2 .
Suppose (H1), (H4), (H5) hold, by (H4), there exist R3 > 1
and ε(0 < ε < λ1) such that

‖f(x)‖ ≤ λ1 − ε

N
‖ x ‖,∀x ∈ P, ‖x‖ ≥ R3,

by (H1), sup{‖ f(x) ‖| x ∈ P, ‖ x ‖≤ R3} = b < +∞, so

‖ f(x) ‖≤ λ1 − ε

N
‖ x ‖ +b, ∀x ∈ P. (12)

Let W = {x ∈ K : Ax ≥ x}, next we show W is bounded.
If x ∈ W, then θ ≤ x(t) ≤ (Ax)(t). Let v(t) =‖ x(t) ‖, by
the normality of cone P and (12) we can get

v(t) =‖ x(t) ‖
≤ N

∫ 1

0

G(t, s)a(s) ‖ f(x(s)) ‖ ds

≤ (λ1 − ε)(Tv)(t) + M,

where M = max
t∈I

Nb

∫ 1

0

G(t, s)a(s)ds, so ((I − (λ1 −
ε)T )v)(t) ≤ M, t ∈ [0, 1]. λ1 is the first eigenvalue of T ,
r((λ1 − ε)T ) = λ1−ε

λ1
< 1, so (I − (λ1 − ε)T )−1 exist and

(I − (λ1 − ε)T )−1 = I + (λ1 − ε)T + ((λ1 − ε)T )2+
... + ((λ1 − ε)T )n + ...

since T : Q1 → Q1 we have (I − (λ1 − ε)T )−1 : Q1 → Q1,
so v(t) ≤ (I − (λ1 − ε)T )−1M, t ∈ [0, 1], i.e. W is bounded.

Take R4 > max{R3, supW}, we can get

Ax � x,∀x ∈ K, ‖x‖ = R4. (13)

By (H5), there exist r2 and ε(0 < ε < λ1) such that

ϕ(f(x)) ≥ (λ1 + ε)ϕ(x),∀x ∈ P, ‖x‖c ≤ r2, (14)

we show
Ax � x,∀x ∈ K, ‖x‖c ≤ r2. (15)

If it is false, there exist x2 ∈ K with ‖ x2 ‖c= r2 such that
Ax2 ≤ x2 , by (14), we can get

ϕ(x2) ≥ ϕ(Ax2)

=
∫ 1

0

G(t, s)a(s)ϕ(f(x(s)))ds

≥ (λ1 + ε)Tϕ(x2),

(16)

so ϕ(x2) ≥ λ1Tϕ(x2)(t), t ∈ I. Note that ϕ(x2) ≥ 0, t ∈ I ,
by lemma 1.1 there exist μ ≥ 0 such that ϕ(x2) = μv0. If
μ = 0, then ϕ(x2)(t) = 0, t ∈ I , so x2(t) ≡ 0, this is in
contradiction with ‖ x2 ‖c= r2; if μ > 0, by (16) we can
get μv0 = ϕ(x2) ≥ (λ1 + ε)Tϕ(x2) = μ(λ1 + ε)Tv0, so
v0 ≥ (λ1 + ε)Tv0, this is in contradiction with v0 = λ1Tv0,
so (15) is proved. By (13),(15) and lemma 1.2, A has a fixed
point in Kr2,R4 , and the theorem is proved.
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Theorem 2.2 Suppose P is a cone in E, and conditions
(H1), (H2), (H5), (H6) are satisfied, the problem (1) has at
least two positive solutions.

Proof: Take cone K in E, similar to theorem 2.1, we
can show A(K) ⊂ K, by (H2), (H5), take R > r0 > r > 0
such that

Ax � x,∀x ∈ K, ‖x‖c ≤ r. (17)

Ax � x,∀x ∈ K, ‖x‖c ≤ R. (18)

On the other hand, we can show

Ax � x,∀x ∈ K, ‖x‖c ≤ r0. (19)

In fact, if there exist x0 ∈ K with ‖ x0 ‖= r0 such that
Ax0 ≥ x0, so we can get θ ≤ x0(t) ≤ (Ax0)(t), t ∈ I, by
the normality of cone and (H6),

‖ x0(t) ‖ ≤ N

∫ 1

0

G(t, s)a(s)‖f(x0(s))‖ds

≤ 1
2N

∫ 1

0

a(s)‖f(x0(s))‖ds

< r0,∀t ∈ [0, 1],

so ‖ x0 ‖< r0, this is in contradiction with ‖ x0 ‖= r0, so
(19) is proved.

Since A is a strictly set contraction in Kr0,R = {x ∈ K |
r0 ≤ ‖x‖c ≤ R} and Kr,r0 = {x ∈ K | r ≤ ‖x‖c ≤ r0},
by (17)− (19) and lemma 1.2, A has fixed point x1 in Kr0,R

and x2 in Kr,r0 respectively, they are all positive solutions of
problem (1), by (19), ‖x1‖c 	= r0, ‖x2‖c 	= r0, so problem (1)
has at least two positive solutions.

Theorem 2.3 Suppose E is a cone in P, conditions
(H1), (H3), (H4), (H7) are all satisfied, then problem (1) has
at least two positive solutions.

Proof: Take cone K in E, similar to theorem 2.1, we can
show A(K) ⊂ K, by (H2) and (H5), take R > r0 > r > 0
such that

Ax � x,∀x ∈ K, ‖x‖c ≤ r, (20)

Ax � x,∀x ∈ K, ‖x‖c ≤ R, (21)

On the other hand, we can show

Ax � x,∀x ∈ K, ‖x‖c ≤ r0. (22)

In fact, if there exist x0 ∈ K with ‖ x0 ‖= r0 such that
Ax0 ≥ x0, so θ ≤ (Ax0)(t) ≤ x0(t), t ∈ I, consequently

ϕ((Ax0)(t)) ≤ ϕ(x0(t)) ≤ r0, (23)

since x0 ∈ ∂Br0

⋂
K, we have q(t)r0 ≤‖ x0(t) ‖≤ r0, take

τ satisfying τ < η < 1 − τ , for t ∈ (τ, 1 − τ), by (H7)

ϕ((Ax0)(t)) =
∫ 1

0

G(t, s)a(s)ϕ(f(x0(s)))ds

> αr0q(t)
∫ 1−τ

τ

J(s)a(s)ϕ(f(x0(s)))ds

> αr0{ητ, 2ητ2}max
∫ 1−τ

τ

J(s)a(s)ϕ(f(x0(s)))ds

= r0.

This is in contradiction with (23), so (22) is proved.

Since A is strictly set contraction in Kr0,R = {x ∈ K |
r0 ≤ ‖x‖c ≤ R} and Kr,r0 = {x ∈ K | r ≤ ‖x‖c ≤ r0}, by
(20)-(22) and lemma 1.2, A has fixed point x1 in Kr0,R and
x2 in Kr,r0 , by (22), ‖x1‖c 	= r0, ‖x2‖c 	= r0, so problem (1)
has at least two positive solutions.
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