Search results for: mechanical engineering.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2218

Search results for: mechanical engineering.

1648 Mathematical Model of the Respiratory System – Comparison of the Total Lung Impedance in the Adult and Neonatal Lung

Authors: M. Rozanek, K. Roubik

Abstract:

A mathematical model of the respiratory system is introduced in this study. Geometrical dimensions of the respiratory system were used to compute the acoustic properties of the respiratory system using the electro-acoustic analogy. The effect of the geometrical proportions of the respiratory system is observed in the paper.

Keywords: Electro-acoustic analogy, total lung impedance, mechanical parameters, respiratory system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
1647 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
1646 Machining of FRP Composites by Abrasive Jet Machining Optimization Using Taguchi

Authors: D. V. Srikanth, M. Sreenivasa Rao

Abstract:

Abrasive Jet Machining is an Unconventional machining process in which the metal is removed from brittle and hard material in the form of micro-chips. With increase in need of materials like ceramics, composites, in manufacturing of various Mechanical & Electronic components, AJM has become a useful technique for micro machining. The present study highlights the influence of different parameters like Pressure, SOD, Time, Abrasive grain size, nozzle diameter on the Metal removal of FRP (Fiber Reinforced Polymer) composite by Abrasive jet machining. The results of the Experiments conducted were analyzed and optimized with TAGUCHI method of Optimization and ANOVA for Optimal Value.

Keywords: ANOVA, FRP Composite, AJC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
1645 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: Game-based learning, knowledge based engineering, product modelling, design automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
1644 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1643 Preparation and Characterization of Chitosan / Polyacrylic Acid / Ag-Nanoparticles Composite Membranes

Authors: Abdel-Mohdy, A. Abou-Okeil, S. El-Sabagh, S. M. El-Sawy

Abstract:

Chitosan polyacrylic acid composite membranes were prepared by a bulk polymerization method in presence of N, N'- methylene bisacrylamide (crosslinker) and ammonium persulphate as initiator. Membranes prepared from this copolymer in presence and absence of Ag nanoparticles were characterized by measuring mechanical and physical properties, water up-take and antibacterial properties. The results obtained indicated that the prepared membranes have antibacterial properties which increase with adding Ag nanoparticles.

Keywords: Ag nanoparticles, antimicrobial, composites, Membrane, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
1642 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer

Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu

Abstract:

In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).

Keywords: Biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
1641 Literature Review on Metallurgical Properties of Ti/Al Weld Joint Using Laser Beam Welding

Authors: K. Kalaiselvan, Naresh Subramania Warrier, S. Elavarasi

Abstract:

Several situations arise in industrial practice which calls for joining of dissimilar metals. With increasing demand in the application requirements, dissimilar metal joining becomes inevitable in modern engineering industries. The metals employed are the structure for effective and utilization of the special properties of each metal. The purpose of this paper is to present the research and development status of titanium (Ti) and aluminium (Al) dissimilar alloys weldment by the researchers worldwide. The detailed analysis of problems faced during welding of dissimilar metal joint for Ti/Al metal combinations are discussed. Microstructural variations in heat affected zone (HAZ), fusion zone (FZ), Intermetallic compound (IMC) layer and surface fracture of weldments are analysed. Additionally, mechanical property variations and microstructural feature have been studied by the researchers. The paper provides a detailed literature review of Ti/Al dissimilar metal joint microchemistry and property variation across the weldment.

Keywords: Laser beam welding, titanium, aluminium, metallurgical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409
1640 Developing NAND Flash-Memory SSD-Based File System Design

Authors: Jaechun No

Abstract:

This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.

Keywords: SSD, data section, I/O optimizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1639 Characteristics of Aluminum Hybrid Composites

Authors: S. O. Adeosun, L. O. Osoba, O. O. Taiwo

Abstract:

Aluminum hybrid reinforcement technology is a response to the dynamic ever increasing service requirements of such industries as transportation, aerospace, automobile, marine, etc. It is unique in that it offers a platform of almost unending combinations of materials to produce various hybrid composites. This article reviews the studies carried out on various combinations of aluminum hybrid composite and the effects on mechanical, physical and chemical properties. It is observed that the extent of enhancement of these properties of hybrid composites is strongly dependent on the nature of the reinforcement, its hardness, particle size, volume fraction, uniformity of dispersion within the matrix and the method of hybrid production.

Keywords: Aluminum alloy, hybrid composites, properties, reinforcements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5073
1638 Stability of Electrical Motor Supplied by a Five Level Inverter

Authors: Kelaiaia Mounia Samira, Labar Hocine, Bounaya Kamel, Kelaiaia Samia

Abstract:

The development of the power electronics has allowed increasing the precision and reliability of the electrical trainings, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) five level inverters, which is the object of study in this article.The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment).

Keywords: multi level inverter, PWM, Harmonics, oscillation, control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
1637 The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant

Authors: S. W. Chen, W. K. Lin, J. R. Wang, C. Shih, H. T. Lin, H. C. Chang, W. Y. Li

Abstract:

Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the overpressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study.

Keywords: TRACE, Safety analysis, BWR/6, FRAPTRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
1636 Design of a Grid for Preparation of high Density Granules from Dispersed Materials

Authors: Bogdan Il. Bogdanov, Dimitar R.Rusev, Yancho H. Hristov, Irena G. Markovska, Dimitar P.Georgiev

Abstract:

New design of a grid for preparation of high density granules with enhanced mechanical strength by granulation of dispersed materials is suggested. A method for hydrodynamic dimensioning of the grid depending on granulation conditions, hydrodynamic regime of the operation, dispersity and physicochemical characteristics of the materials to be granulated was suggested. The aim of the grid design is to solve the problems arising by the granulation of disperse materials.

Keywords: fluidized bed reactor, granulation, porous silicatematerials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
1635 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio

Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot

Abstract:

In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.

Keywords: Aspect Ratio, Channel, Jet, Mixed convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1634 In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials

Authors: Yuko Matayoshi, Takashi Sakai, Ying-jun Jin, Jun-ichi Koyama

Abstract:

To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and microstructures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron backscatter diffraction (EBSD) analyses.

Keywords: Pure aluminum, Pure copper, Single crystal, Bending, SEM-EBSD analysis, Texture, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
1633 Using Molecular Dynamics to Assess Mechanical Properties of PAN-Based Carbon Fibers Comprising Imperfect Crystals with Amorphous Structures

Authors: A. Ito, S. Okamoto

Abstract:

We constructed an atomic structure model for a PAN-based carbon fiber containing amorphous structures using molecular dynamics methods. It was found that basic physical properties such as crystallinity, Young’s modulus, and thermal conductivity of our model were nearly identical to those of real carbon fibers. We then obtained the tensile strength of a carbon fiber, which has no macro defects. We finally determined that the limitation of the tensile strength was 19 GPa.

Keywords: Amorphous, carbon fiber, molecular dynamics, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2949
1632 Viscoelastic Modeling of Brain MRE Data Using FE Method

Authors: H. Ajabi Naeeni, M. Haghpanahi

Abstract:

Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this study, An axisymmetric FE model is presented for determining the dynamic shear behaviour of brain simulated phantom using ABAQUS. The main objective of this study was to investigate the effect of excitation frequencies and boundary conditions on shear modulus and shear viscosity in viscoelastic media.

Keywords: Viscoelastic, MR Elastography, Finite Element, Brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1631 Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti – 6Al – 4V Alloy

Authors: Dinesh Setti, Sudarasan Ghosh, P. Venkateswara Rao

Abstract:

Minimum Quantity Lubrication (MQL) technique obtained a significant attention in machining processes to reduce environmental loads caused by usage of conventional cutting fluids. Recently nanofluids are finding an extensive application in the field of mechanical engineering because of their superior lubrication and heat dissipation characteristics. This paper investigates the use of a nanofluid under MQL mode to improve grinding characteristics of Ti-6Al-4V alloy. Taguchi-s experimental design technique has been used in the present investigation and a second order model has been established to predict grinding forces and surface roughness. Different concentrations of water based Al2O3 nanofluids were applied in the grinding operation through MQL setup developed in house and the results have been compared with those of conventional coolant and pure water. Experimental results showed that grinding forces reduced significantly when nano cutting fluid was used even at low concentration of the nano particles and surface finish has been found to improve with higher concentration of the nano particles.

Keywords: MQL, Nanofluid, Taguchi method, Ti-6Al-4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991
1630 The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes

Authors: Jiří Primas, Michal Malík, Darina Jašíková, Václav Kopecký

Abstract:

When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.

Keywords: Capacitor with asymmetrical electrodes, Generated force, Heated electrode, High voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1629 Solvatochromic Shift and Estimation of Dipole Moment of Quinine Sulphate Dication

Authors: S. Joshi, D. Pant

Abstract:

Absorption and fluorescence spectra of quinine sulphate (QSD) have been recorded at room temperature in wide range of solvents of different polarities. The ground-state dipole moment of QSD was obtained from quantum mechanical calculations and the excited state dipole moment of QSD was estimated from Bakhshiev-s and Kawski-Chamma-Viallet-s equations by means of solvatochromic shift method. Higher value of dipole moment is observed for excited state as compared to the corresponding ground state value and this is attributed to the more polar excited state of QSD.

Keywords: Dipole moment, Quinine sulphate dication, Solvatochromic shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
1628 Development of Blower for Air Management System of Fuel Cell Modules

Authors: Joo-Han Kim, Jung-Moo Seo, Ha Gyeong Sung, Se Hyun Rhyu

Abstract:

This study presents a blower for air management system of fuel cell modules. A blower is composed of BLDC motor and impeller. Magnetic equivalent circuit model and finite element analysis are used to design the motor, and an improved structure is considered to reduce a mechanical loss induced from bearing units. Finally, air blower system combined with the motor and an impeller is manufactured and output properties, such as an air pressure and an amount of flowing air, are measured. Through the experimental results, a validity of the simulated one is confirmed.

Keywords: Fuel cell modules, BLDC motor, Impeller, Air management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
1627 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface

Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, Kh. V. Nerkararyan

Abstract:

Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depend on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.

Keywords: Fiber-tip, Liquid-air interface, Nano vibration, Opto-mechanical sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
1626 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet F. Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminum foam core because of very good properties such as flexural rigidity and energy absorption capability. In the current investigation, the static threepoint bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load and energy absorption capacity. For this purpose, the skins with two different types of fabrics which have same thickness value and the aluminum foam core with two different thicknesses were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: Aluminum foam, Composite panel, Flexure, Transport application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
1625 Fabrication of Al/Cu Clad Sheet by Shear Extrusion

Authors: Joon Ho Kim, Duck Su Kim, Tae Kwon Ha

Abstract:

Aluminum/Copper clad sheet has been fabricated using asymmetric extrusion method, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Interfacial microstructure and mechanical properties of Al/Cu clad were studied by scanning electron microscope equipped with energy dispersive X-ray detector, micro-hardness, and tension tests. The asymmetric extrusion bonding was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing extrusion ratio.

Keywords: Aluminum/Copper clad sheet, Asymmetric extrusion, Interfacial microstructure, Annealing, Tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
1624 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1623 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory

Authors: A. Ramdane, F.Naceri, S. Ramdane

Abstract:

in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.

Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
1622 Finite Element Analysis of Different Architectures for Bone Scaffold

Authors: Nimisha R. Shirbhate, Sanjay Bokade

Abstract:

Bone Scaffolds are fundamental architecture or a support structure that allows the regeneration of lost or damaged tissues and they are developed as a crucial tool in biomedical engineering. The structure of bone scaffolds plays an important role in treating bone defects. The shape of the bone scaffold performs a vital role, specifically pore size and shape, which help understand the behavior and strength of the scaffold. In this article, first, fundamental aspects of bone scaffold design are established. Second, the behavior of each architecture of the bone scaffold with biomaterials is discussed. Finally, for each structure, the stress analysis was carried out. This study aimed to design a porous and mechanically strong bone regeneration scaffold that can be successfully manufactured. Four porous architectures of the bone scaffold were designed using Rhinoceros solid modelling software. The structure model consisted of repeatable unit cells arranged in layers to fill the chosen scaffold volume. The mechanical behavior of used biocompatible material is studied with the help of ANSYS 19.2 software. It is also playing significant role to predict the strength of defined structures or 3 dimensional models.

Keywords: Bone scaffold, stress analysis, porous structure, static loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
1621 Rational Structure of Panel with Curved Plywood Ribs

Authors: Janis Šliseris, Karlis Rocens

Abstract:

Optimization of rational geometrical and mechanical parameters of panel with curved plywood ribs is considered in this paper. The panel consists of cylindrical plywood ribs manufactured from Finish plywood, upper and bottom plywood flange, stiffness diaphragms. Panel is filled with foam. Minimal ratio of structure self weight and load that could be applied to structure is considered as rationality criteria. Optimization is done, by using classical beam theory without nonlinearities. Optimization of discreet design variables is done by Genetic algorithm.

Keywords: Curved plywood ribs, genetic algorithm, rationalparameters of ribbed panel, structure optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1620 Experimental Testing of Ceramic Cutting Tool Inserts at Irregular Interrupted Cut

Authors: Robert Cep, Jana Petru, Lenka Cepova, Tomas Zlamal

Abstract:

Paper is dealing by testing of IN23 ceramic cutting tools at irregular shocks at special fixture - interrupted cut simulator. Standard tests provided at fixture were at regular interrupted cut at 4 slats by 90°. These new tests will be at irregular cut for 1 slat, 2 slats against each other, 2 slats side by side, 3 slats and 4 slats. The main goal is check if irregular shocks have influence at mechanical and thermal shock at tool life of cutting inserts. 

Keywords: Test, Ceramic Cutting Tool, Irregular Interrupted Cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1619 Two Kinds of Self-Oscillating Circuits Mechanically Demonstrated

Authors: Shiang-Hwua Yu, Po-Hsun Wu

Abstract:

This study introduces two types of self-oscillating circuits that are frequently found in power electronics applications. Special effort is made to relate the circuits to the analogous mechanical systems of some important scientific inventions: Galileo’s pendulum clock and Coulomb’s friction model. A little touch of related history and philosophy of science will hopefully encourage curiosity, advance the understanding of self-oscillating systems and satisfy the aspiration of some students for scientific literacy. Finally, the two self-oscillating circuits are applied to design a simple class-D audio amplifier.

Keywords: Self-oscillation, sigma-delta modulator, pendulum clock, Coulomb friction, class-D amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424