Rational Structure of Panel with Curved Plywood Ribs

Jānis Šliseris, Kārlis Rocēns

Abstract—Optimization of rational geometrical and mechanical parameters of panel with curved plywood ribs is considered in this paper. The panel consists of cylindrical plywood ribs manufactured from Finish plywood, upper and bottom plywood flange, stiffness diaphragms. Panel is filled with foam. Minimal ratio of structure self weight and load that could be applied to structure is considered as rationality criteria. Optimization is done, by using classical beam theory without nonlinearities. Optimization of discreet design variables is done by Genetic algorithm.

Keywords—Curved plywood ribs, genetic algorithm, rational parameters of ribbed panel, structure optimization.

I. INTRODUCTION

INIMAL material consumption, structure weight, new Larational large span structures and use of environmentally friendly materials in structures are the main directions of research in today's structural engineering science. Wood is one of the renewable natural resources and plywood sheets provide a rational use of wood. Traditionally used flat plywood sheets are not rational in many cases because of their slenderness and insufficient load bearing capacity. The load bearing capacity of plywood sheets could be increased significantly by using sheets with curved shape. Therefore, in this paper a new panel structure is proposed, witch is based on cylindrical plywood ribs in combination with other plywood elements - top and bottom flange, shear stiffness diaphragms, plywood stiffeners, and inside filled with foams. The structure becomes more efficient if it's geometrical and mechanical parameters (technologically changeable) are optimized. In this paper optimization of the proposed panel structure is elaborated.

II. STRUCTURE OF PANEL AND PARAMETERS TO BE OPTIMIZED

In this paper way of optimization of geometrical and mechanical parameters of panel with curved plywood ribs is shown. Cross section, longitudinal section and structural analysis scheme of provided structure are showed in fig 1.

The curved plywood shell could be manufactured by using hot pressing, cold pressing, vacuum pressing or making structure with special nonsymmetrical structure, curved with moisture difference [1]-[3]. In this work it is assumed that curved plywood shells are made with symmetrical structure with respect to its mid surface and curved by hot pressing.

Fig. 1 The panel with curved plywood ribs: a – cross section, b – longitudinal section, c – structural analysis scheme

The most important geometrical and mechanical parameters of panel are:

t₁- thickness of cylindrical shell ribs,

t₂- thickness of top plywood flange,

t₃- thickness of bottom plywood flange,

t₄- average thickness of plywood stiffener,

 t_5 -thickness of side element, during optimization it is constant t_5 =6.5 mm,

 t_6 - thickness of shear stiffness diaphragms, during optimization it is constant t_6 =9 mm,

 t_{7} - thickness of support stiffness diaphragms, during optimization it is constant t_6 =12 mm,

b- width of cylindrical shell,

h- total height of panel,

b₁- width of plywood stiffener,

L1- distance between shear stiffness diaphragms (count of

shear stiffness diaphragms is
$$n = \frac{L}{L_{t}} - 1$$
)

L- span of panel,

 ρ_p - density of foam.

The panel thickness h depends on heat and sound insulation requirements and load bearing capacity requirements [4]. Therefore this parameter is not included in design vector. The design vector parameters are optimized for each discrete values of thickness of panel h=200,250,300,350 mm.

The span of panel depends on building's overall structure of the building, therefore it is not considered as an optimized parameter. According to classical knowledge of this type of

J. Šliseris is with the Department of Structural engineering, Riga Technical university, Rīga, Latvia (phone: 371-26214882; e-mail: janis.sliseris@gmail.com).

K. Rocēns is with the Department of Structural engineering, Riga Technical university, Rīga, Latvia (phone: 371-7089284; fax: 371-7089121 e-mail: rocensk@latnet.lv).

structure the material consumption is smaller for smaller span [5]. For each value of span L=4000, 6000, 8000, 10000 mm are found optimal values of design vector components.

Other mentioned parameters can be optimized therefore the design vector consists of eight parameters:

$$x = \{t_1, t_2, t_3, t_4, b, b_1, n, \rho_p\}$$
(1)

Each component of design vector takes one value from eight discrete values. These values are shown in table 1.

 TABLE I

 PARAMETERS TO BE OPTIMIZED AND ITS DISCRETE VALUES

 t.t.t.t.* h mm h.mm n

$t_1, t_2, t_3, t_4, *$	b, mm	b_1 , mm	n	ρ _p ,
mm				kg/m ³
6.5	400	80	1	9.9
9	450	90	3	13.7
12	500	100	5	17.5
15	550	110	7	21.4
18	600	120	9	25.2
21	650	130	11	29.0
24	700	140	13	32.8
27	750	150	15	36.6

* Each design variable could be different from each other.

The thickness of plywood elements is taken according to Finnish birch plywood standards. For each thickness of Finnish birch plywood its appropriate characteristic strength and mean stiffness properties are used in the analysis. The minimized objective function is the ratio of structure's weight-W and maximum value of load- Q that could be applied to structure:

$$f(x) = \frac{W}{Q} \tag{2}$$

where W- total weight of panel, Q- maximal value of load that is uniformly distributed and satisfies ULS (ultimate limit state) and SLS (serviceability limit state) criteria.

III.DISCREAT PARAMETER OPTIMIZATION WITH GENETIC ALGORITHM

A. Overview of optimization algorithms

There are many methods that provide optimization of the structures. The classical methods are based on calculus and use of function derivatives. Serious problems arise in the cases if there are local extremes, discrete design variables, discontinuous objective function or nonconvex design space [6]. These properties of objective function are difficult to identify for large and relatively novel systems. In this case a new structure is provided and there is no preliminary knowledge of its behavior depending of its parameters, therefore use of nontraditional optimization technique is more rationally. There are several nontraditional optimization techniques- Genetic algorithms [7]-[8], Simulated annealing [9], Particle swarm optimization, Ant colony optimization, Fuzzy optimization, Neural-network-based methods. For this type of problem according to [6]-[10] the most convenient is Genetic algorithm, therefore it will be used in further structure optimization.

B. Genetic algorithm (GA)

A general constrained minimization problem can be stated as

$$(1) \begin{array}{l} Minimize(f(x)) \\ g_i(x) \le 0, i = 1..m \\ h_j(x) = 0, j = 1..p \end{array}$$
(3)

where x - vector of design variables, f(x) - objective function, $g_i(x)$, $h_j(x)$ - constrains that in form of inequalities and equalities.

GA can be used only for unconstrained problems. Therefore problem (3) is converted into an equal unconstrained minimization problem by using concept of penalty functions as

$$Minimize(\Phi(x))$$

$$\Phi(x) = f(x) + \sum_{i=1}^{m} r_i (G_i(x))^2 + \sum_{j=1}^{p} R_j (h_j(x))^2$$
⁽⁴⁾

where r_i, R_j – penalty parameters, its values are constant during optimization, $G_i(x)$ is defined as

$$G_{i}(x) = \begin{cases} g_{i}(x), g_{i}(x) > 0\\ 0, g_{i}(x) \le 0 \end{cases}$$
(5)

GA is based on the principles of natural genetics and natural selection (Darwin's theory of survival of the fittest). The basic operators of natural genetics are reproduction, crossover and mutation. Simplified flowchart of GA is shown in fig 2.

Fig 2. Flowchart of Genetic algorithm.

Reproduction is the first operator applied to the population to select "good" design vectors that gives a minimal value to objective function.

Crossover is second operator applied to the population with initially defined probability Pc. The Crossover operator randomly selects two design vectors (called parents) from population and by changing its binary codes obtains two new design vectors although there are also methods that use only real numbers [11].

The crossover operator generate random integer number in interval from 1 to n, where n- length of binary code. By changing binary numbers of parents from i-th place, where i is generated as random number, obtains two new binary codes (called child). The crossover operation is done only in case if child gives better value of fitness function.

For example if two components of design vector has values $x_1 = 105(mm)$ and $x_2 = 110(mm)$, n=8, i=6, the crossover modify components of design vector following obtaining a new values of components of design vector $x_1 = 106(mm)$,

$$\begin{cases} x_1 = \{011010 \mid 01\} \\ x_2 = \{011011 \mid 10\} \end{cases} \xrightarrow{crossover} \begin{cases} x_1 = \{01101010\} \\ x_2 = \{0110111 \mid 10\} \end{cases}$$

The *Mutation* operator is applied to the new binary codes with a specific small probability Pm. This operator changes each number in binary code from value 1 to 0 or 0 to 1 with probability Pm, that is very small, usually Pc<0.01. In

previously given example the Mutation operator gives following result:

$$x_1 = \{0110(1)001\} \xrightarrow{Mutation} x_1 = 0110(0)001$$
.

III. OPTIMIZATION

The value of maximal total load Q is calculated using following criteria's:

1. Compressions stress in top flange of panel is less than compression strength of plywood (in direction of mostly orientated veneer fibers):

$$g_1 = \frac{\left|\sigma_{\max}^{-}\right|}{f_{c,0,k} \cdot \left(\frac{k_{\text{mod}}k_{sys}}{\gamma_m}\right)} - 1 \le 0$$
(6)

2. Tension stress in bottom flange of panel is less than tension strength of plywood (in direction of mostly orientated veneer fibers);

$$g_{2} = \frac{\left|\sigma_{\max}^{+}\right|}{f_{t,0,k} \cdot \left(\frac{k_{\text{mod}}k_{sys}}{\gamma_{m}}\right)} - 1 \le 0$$
(7)

3. Deflection of panel is less than 1/200 of span. Deflection is calculated using Timoshenko beam theory that takes into

account shear deformations. The problem is solved using Ritz method, approximating deflection function of simply supported beam by forth order polynomial. Obtained following equation for deflection in middle of span:

$$\Delta(0.5L) = \frac{0.013 \cdot qL^6 GI + 0.167 \cdot qL^4 E \cdot t \cdot h^5}{EGL^2 I^2 + 16E^2 I \cdot t \cdot h^5}$$
(8)

$$g_3 = \frac{|\Delta(0.5L)|}{\frac{1}{200}L} - 1 \le 0$$
(9)

4. Shear stress in curved plywood shell and foams are less than shear strength. In numerical analysis foam material are Extended polystyrene (EPS). The EPS is reduced to equal thickness plywood rib by using radio of Shear modulus of EPS and plywood.

$$g_4 = \frac{|\tau_{\max}|}{f_{\nu,k} \cdot \left(\frac{k_{\max}k_{sys}}{\gamma_m}\right)} - 1 \le 0$$
(10)

5. Compression stress in top flange should not exceed buckling stress that is calculated using linear Euler analysis of buckling. Top flange is considered as a simply supported beam under axial load with span equal to distance between shear stiffness diaphragms.

$$g_5 = \frac{\left|\sigma_{\max}^{-}\right|}{\sigma_{crit}} - 1 \le 0 \tag{11}$$

6. Stress of top flange should be less than bending strength of plywood(in orthogonal direction of mostly orientated wood fibers). The top flange is considered as a beam on elastic foundation. The elastic foundation is EPS and it is assumed that it satisfies Vinkler's hypothesis. The modulus of elasticity of EPS is calculated depending on density of EPS. In case if relative deformations are less than 10% density of EPS could be approximated by following linear relationship [12]:

$$E_p = \frac{\rho_p - 6.096}{12.724} \tag{12}$$

$$g_{6} = \frac{\left|\sigma_{\max}\right|}{f_{m,90,k} \cdot \left(\frac{k_{\text{mod}}k_{sys}}{\gamma_{m}}\right)} - 1 \le 0$$
(13)

where $k_{\text{mod}} = 0.55$ modification factor for long term load [13]-[14], $k_{sys} = 1$, $\gamma_m = 1.2$ - material safety factor, $f_{c,o,k}$, $f_{t,o,k}$, $f_{v,k}$, $f_{m,90,k}$ - characteristic strength of Finnish birch

plywood,
$$G = \frac{G_{v,mean}}{1+k_{def}}$$
, $E = \frac{E_{t/c,0,mean}}{1+k_{def}}$, $k_{def} = 0.8$ -

safety factor, that takes into account creep for services class 2 [13]-[14], I- second moment of area- calculated taking into account reduced width of compressed and tensioned flange according to [13]-[14], t- reduced thickness of plywood shell-

sum of thickness of plywood shell and EPS thickness that is reduced to equal plywood thickness, ρ_p – density of EPS,

 $\frac{kg}{m^3}$, E_p – modulus of elasticity of EPS, MPa.

The weight of structure W is calculated assuming that plywood average density is 700 kg/m^3 .

Probability of crossover, probability of mutation was used 0.7 and 0.001. In the reproduction operator the only 3% of design vectors with highest fitness ratio was kept. Numerical results showed that fast result convergence is obtained if the probability of crossover and mutation are in interval 0.65...0.75 and 0.0005...0.0015, respectively. The behavior of objective function in design space showed that global optimum could be found with high probability if reproduction

operator keeps less than 3% of design vectors with highest fitness ratio. In case if it was 5%...7% there is a big probability to identify local extremes.

The analysis showed that objective function f(x) is strong nonlinear with many local extremes. Results approved that classical optimization methods are difficult to use in this case. It could be done only in case if the design space is divided in many smaller subspaces.

The rational parameters of panel is obtained for the case if the span varies form 4000 to 10000mm, height of panel varies form 200 to 350 mm and uniformly distributed load varies from 2 to 7.5 KPa. The values of rational parameters and reserve of strength and stiffness for each criterion are showed in table II.

TABLE II NUMERICAL RESULTS OF OPTIMIZATION WITH GA

Geometrical parameters, mm							ρ _p , kg/m3	f(x), kg/kN	Reserve of strength and stiffness for each criteria (see eq. (6)-(13)), %							
L	h	t ₁	t ₂	t ₃	t ₄	b	b ₁	n			g 1	<u>g</u> ₂	g ₃	g ₄	g ₅	g ₆
q=2 KPa																
4000	200	6.5	6.5	6.5	6.5	450	80	3	9.9	9.4	62.9	69.2	44.9	16.1	99.6	97.6
4000	250	6.5	6.5	6.5	6.5	550	90	3	9.9	10.0	66.6	73.2	60.1	10.7	60.4	99.4
4000	300	6.5	6.5	6.5	6.5	650	100	3	9.9	10.5	69.6	76.1	69.7	6.3	98.0	99.7
4000	350	6.5	6.5	6.5	6.5	750	90	3	9.9	11.0	71.4	77.9	75.6	0.9	99.7	99.3
6000	200	6.5	6.5	6.5	24	400	80	5	9.9	10.1	54.8	57.8	6.2	20.4	89.4	96.1
6000	250	6.5	6.5	6.5	9	450	90	5	9.9	9.7	49.4	52.8	2.5	8.7	89.4	97.5
6000	300	6.5	6.5	6.5	6.5	500	100	5	9.9	10.0	52.8	57.1	22.8	9.0	99.4	98.5
6000	350	6.5	6.5	6.5	9	600	80	5	9.9	10.5	54.5	60.4	37.9	0.5	92.8	98.0
8000	200	6.5	24	6.5	27	400	80	5	9.9	15.1	47.8	74.2	0.5	14.3	99.7	92.5
8000	250	6.5	9	6.5	27	400	150	5	9.9	12.6	56.9	61.9	3.0	21.2	99.4	91.0
8000	300	6.5	6.5	6.5	27	450	90	5	9.9	11.1	51.9	52.1	1.1	18.5	96.4	97.5
8000	350	6.5	6.5	6.5	12	400	80	5	9.9	10.8	53.4	49.9	5.0	28.8	47.5	96.1
10000	200	24	27	27	27	400	130	7	9.9	25.2	68.4	73.9	0.2	75.6	99.5	93.4
10000	250	6.5	27	12	27	400	130	7	9.9	18.0	55.2	74.1	0.3	22.3	94.7	93.9
10000	300	6.5	21	6.5	27	400	150	7	9.9	16.0	48.9	71.2	2.5	20.7	58.4	91.9
10000	350	6.5	18	6.5	27	400	80	7	9.9	14.5	47.0	67.1	5.7	23.0	95.5	90.2
							C	1=3 H	KPa							
4000	200	6.5	6.5	6.5	9	400	80	3	9.9	6.7	53.4	60.8	31.7	1.3	25.1	94.4
4000	250	6.5	6.5	6.5	6.5	450	90	3	9.9	7.0	58.2	65.5	49.3	3.0	99.8	96.4
4000	300	6.5	6.5	6.5	6.5	500	90	3	9.9	7.4	62.9	69.9	62.4	5.7	98.7	98.0
4000	350	6.5	6.5	6.5	9	600	100	3	9.9	7.9	66.6	73.6	71.6	0.0	99.5	99.9
6000	200	6.5	6.5	6.5	27	400	150	5	9.9	8.1	51.3	56.8	3.9	1.4	97.7	92.3
6000	250	6.5	6.5	6.5	15	400	130	5	9.9	7.4	46.8	50.6	1.7	2.5	99.2	93.0
6000	300	6.5	6.5	6.5	6.5	400	90	5	9.9	7.1	42.6	44.8	3.0	2.6	59.0	94.1
6000	350	6.5	6.5	6.5	6.5	450	110	5	9.9	7.5	47.8	51.7	25.4	3.2	66.7	95.9
8000	200	6.5	27	18	27	400	80	7	9.9	13.0	59.6	71.5	8.2	0.2	99.8	90.6
8000	250	6.5	24	9	24	400	80	7	9.9	11.2	46.1	69.7	3.0	0.4	94.8	89.2
8000	300	6.5	12	6.5	27	400	140	7	9.9	9.6	47.7	58.9	4.3	0.1	93.6	84.7
8000	350	6.5	6.5	6.5	21	400	120	7	9.9	8.3	47.1	46.4	0.4	12.1	98.6	93.2
10000	200						Maxim	al de	flection cr	iteria is no	ot satisfie	ed				
10000	250	21	27	27	27	400	150	7	9.9	18.4	63.9	70.1	0.5	67.2	98.6	91.2
10000	300	6.5	24	21	27	400	90	7	9.9	13.7	58.3	64.2	0.9	2.4	99.8	89.0

World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering Vol:5, No:3, 2011

10000 380 6.5 2.4 6.5 2.7 400 10 7 9.9 12.0 37.3 6.8.8 0.3 5.8 9.0.1 9.1 44000 200 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 7.9 9.0 5.8 9.2 6.5 6.5 0.9 9.1 9.0 9.5 8.9 6.5 6.5 0.0 9.9 5.8 9.2 6.5 6.5 9.2 6.6 0.5 6.5 1.2 0.0 1.0 5 9.9 6.3 4.22 4.00 1.0 5 9.9 6.3 4.22 4.00 1.0 5 9.9 6.3 4.22 4.00 1.0 5 9.9 6.3 4.22 4.00 1.0 5 9.9 1.3 4.02 3.0 7.0 9.02 4.1 4.02 3.0 7.0 9.02 4.1 6.02 6.0 6.0 7.0 9.02 <																		
set of the transform400025065 </td <td>10000</td> <td>350</td> <td>6.5</td> <td>24</td> <td>6.5</td> <td>27</td> <td>400</td> <td>140</td> <td>7</td> <td>9.9</td> <td>12.0</td> <td>37.3</td> <td>68.8</td> <td>0.3</td> <td>5.8</td> <td>90.7</td> <td>90.1</td>	10000	350	6.5	24	6.5	27	400	140	7	9.9	12.0	37.3	68.8	0.3	5.8	90.7	90.1	
4400 250 64 2 1 1 1.5 9 1.5 44.2 9 1.5 44.2 9 9 1.5 84.2 1.1 1.5 9 9 9.5 8 9 1.5 84.2 1.0 9 9.1 9 9.3 9.9 5.8 8.2 1.0 9 8.1 1.0 1.0 9 8.1 1.1 1.0 <th1.0< th=""> <th1.0< th=""> <th1.0< th=""> <</th1.0<></th1.0<></th1.0<>	q=4 KPa																	
4400 250 6.5 130 5 9.9 6.6 4.2.1 6.53 7.2 7.9 2 4.1 6000 200 9 6.5 6.5 12 400 110 5 9.9 6.1 4.54 49.2 2.17 10 9.5 8.7 6000 200 9 2.7 12 2.4 400 120 7 9.9 12.1 6.16 6.8 1.5 9.9 8.1 1.5 1.5 9.5 8.8 6000 200 9 7.2 9.9 1.2 1.1 5.1 8.9 1.8 8.8 8.6 10000 30 <t< td=""><td>4000</td><td>200</td><td>9</td><td>6.5</td><td>6.5</td><td>6.5</td><td>400</td><td>100</td><td>3</td><td>9.9</td><td>5.5</td><td>44.2</td><td>54.1</td><td>15.5</td><td>9.0</td><td>94.1</td><td>91.9</td></t<>	4000	200	9	6.5	6.5	6.5	400	100	3	9.9	5.5	44.2	54.1	15.5	9.0	94.1	91.9	
4400 58 652 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 9.9 6.1 6.21 6.23 6.7 0.7 9.4 4.9 9.2 6.6 4.23 6.23 7.0 9.4 4.53 7.2 4.00 1.00 5 9.9 6.3 4.21 6.53 7.0 7.0 9.2 9.4 6000 200 9 6.5 6.5 6.5 1.2 400 1.10 5 9.9 6.1 4.5. 4.9 9.0 2.8 4.8 4.1 5.9 9.5 6.8 1.6 9.7 9.8 4.2 1.0 7.0 9.9 1.2 7.0 9.0 1.2 7.0 9.0 1.2 7.0 9.0 1.2 7.0 9.0 1.2 7.0 9.0 1.2 7.0 9.0 1.2 9.5 5.5 0.0 7.5 7.	4000	250	6.5	6.5	6.5	9	400	120	3	9.9	5.6	55.8	63.2	47.0	0.9	99.7	91.2	
4400 50 6.5 6.5 6.4 9.9 8.1 6.2.4 6.2.4 6.3 2.2.2 0.1 9.9.3 8.1 6000 250 9 6.5 6.5 2.7 4.90 130 5 9.9 6.6 4.2.1 6.3 3.2.2 0.1 9.9 9.1 6000 300 9 6.5 6.5 6.5 12 400 110 5 9.9 6.1 42.1 43.4 49.2 8.0 1.0 7 9.9 1.1 6.16 6.6 1.0 7 9.9 1.1 6.16 6.6 1.0 7 9.9 9.1 8.1 4.54 49.2 1.0 1.5 3.9 8.8 9.5 8.0 8000 200 9 21.1 6.16 6.6 1.0 1.0 7 9.9 1.1 5.1 6.10 1.0 1.5 8.8 8.6 8000 200 9 21.1 6.1 6.1 0.1 0.0 9.9 1.1 5.1 5.1 5.9	4000	300	6.5	6.5	6.5	6.5	400	90	3	9.9	5.8	59.2	65.9	58.0	10.6	86.4	92.2	
6000 200 9 8.1 4.1 5.3 2.2 6.6 2.3 2.1 6.3 3.2 2.8 3.0 7.7 9.92 9.1 6000 300 9 6.5 6.5 12 400 110 5 9.9 6.1 4.34 4.92 2.7 9 9.6 1.4 4.4 4.92 2.7 9 9.8 1.4 6.4 4.92 2.7 9 9.8 1.4 6.1 6.7 9.7 8.8 8000 300 9 2.4 6.5 2.1 400 120 7 9.9 1.3 6.1 6.7 9.7 8.8 10000 300 18 2.7 2.7 400 120 7 9.9 1.4 5.1 6.0 0.7 7.4 9.7 8.2 10000 300 18 2.7 2.7 400 120 7 9.9 1.4 5.1 6.0 0.7 </td <td>4000</td> <td>350</td> <td>6.5</td> <td>6.5</td> <td>6.5</td> <td>6.5</td> <td>450</td> <td>90</td> <td>3</td> <td>9.9</td> <td>6.1</td> <td>62.4</td> <td>69.2</td> <td>67.0</td> <td>9.4</td> <td>45.9</td> <td>95.2</td>	4000	350	6.5	6.5	6.5	6.5	450	90	3	9.9	6.1	62.4	69.2	67.0	9.4	45.9	95.2	
6000 250 9. 6.6 4.2. 50. 3.0 7.0 9.2. 9.4.1 6000 300 6.5 6.5 6.5 12 400 10 5 9.9 6.1 45.4 48.9 8.0 21.0 94.5 90.7 6000 300 6.5 6.5 12 27 400 120 7 9.9 12.4 6.6 6.8 1.6 6.8 1.6 9.8 7 7.9 9.9 1.2 4.1 6.5 8.5 8.8 8000 300 9 12 6.5 1 400 120 7 9.9 1.2 6.6 0.5 8.5 8.8 10000 300 18 27 27 70 0.9 1.7 9.9 1.4 5.1 5.1 8.3 8.5 10000 300 18 27 27 7 0.0 0.7 9.9 1.4 5.1 5.1 </td <td>6000</td> <td>200</td> <td>9</td> <td>18</td> <td>6.5</td> <td>24</td> <td>400</td> <td>140</td> <td>5</td> <td>9.9</td> <td>8.1</td> <td>42.1</td> <td>65.3</td> <td>2.2</td> <td>0.1</td> <td>99.3</td> <td>82.4</td>	6000	200	9	18	6.5	24	400	140	5	9.9	8.1	42.1	65.3	2.2	0.1	99.3	82.4	
6000 300 6.5 6.5 6.5 1.2 400 110 5 9.9 6.1 45.4 49.2 23.7 0.9 86.6 91.5 8000 200 9 27 12 24 400 120 7 9.9 12 6.1 6.6 6.8 16.9 9.5 8.8.7 8000 300 9 24 6.5 27 400 100 7 9.9 9.1 3.61 67.9 9.5 8.8.7 8000 300 18 27 27 7 400 100 7 9.9 1.4 54.1 6.1 0.1 19.2 9.8 8.8 10000 300 18 27 27 7 400 120 7 9.9 1.4 54.1 6.1 0.1 19.4 8.4 10000 30 9 2.4 8.0 130 9.4 8.4 3.1 5.8 8.8 </td <td>6000</td> <td>250</td> <td>9</td> <td>6.5</td> <td>6.5</td> <td>27</td> <td>450</td> <td>130</td> <td>5</td> <td>9.9</td> <td>6.6</td> <td>42.3</td> <td>50.5</td> <td>3.0</td> <td>7.7</td> <td>99.2</td> <td>94.1</td>	6000	250	9	6.5	6.5	27	450	130	5	9.9	6.6	42.3	50.5	3.0	7.7	99.2	94.1	
6 600 530 6.5 6.5 72 7 74 900 12.0 7 9.9 12.1 61.6 66.8 1.6 9.7 97.0 88.5 8000 250 9 27 12 24 400 120 7 9.9 10.2 61.6 66.8 1.6 9.9 15.3 98.5 88.7 8000 300 9 24 6.5 21 400 100 7 9.9 1.3 6.1 67.0 8.5 88.5 10000 300 9 24 27 27 400 120 7 9.9 1.4 5.1 6.1 1.9 9.8 8.8 10000 300 18 27 27 27 400 30 9 4.8 4.11 5.1 8.1 8.8 8.6 4000 200 9 6.5 6.5 6.5 400 100 3.9 5.8 5.3 <td>6000</td> <td>300</td> <td>9</td> <td>6.5</td> <td>6.5</td> <td>12</td> <td>400</td> <td>130</td> <td>5</td> <td>9.9</td> <td>6.3</td> <td>43.2</td> <td>48.9</td> <td>8.0</td> <td>21.0</td> <td>94.5</td> <td>90.7</td>	6000	300	9	6.5	6.5	12	400	130	5	9.9	6.3	43.2	48.9	8.0	21.0	94.5	90.7	
8000 200 9 27 27 27 400 120 7 99 12.1 61.6 66.8 1.6 9.7 97.0 88.7 8000 300 9 24 6.5 21 400 120 7 9.9 7.9 3.7 5.2 0.3 1.5.5 98.5 88.7 8000 200 9 1.2 6.5 2.7 400 10 7 9.9 7.9 5.2 6.0 0.7 57.4 98.7 88.2 10000 300 18 27 27 400 120 7 9.9 1.4.2 59.5 6.0 0.7 57.4 99.7 88.2 10000 300 18 27 27 400 120 7 9.9 1.4.2 59.5 6.0 0.7 57.4 99.7 88.2 10000 200 9 6.5 6.5 12 400 120 3 <	6000	350	6.5	6.5	6.5	12	400	110	5	9.9	6.1	45.4	49.2	23.7	0.9	98.6	91.5	
8000 250 9 27 12 24 400 120 7 99 102 47.1 69.2 0.4 15.9 98.5 88.7 8000 350 9 12 6.5 21 400 100 7 9.9 19.1 36.1 67.9 19. 15.5 98.5 86.7 10000 300 18 27 27 27 70 09 11.4 54.1 61.1 0.1 19.2 99.8 85.8 10000 300 18 27 27 70 400 130 3 9.9 4.8 4.1 61.1 0.1 19.2 98.8 85.8 4000 200 9 6.5 6.5 6.5 400 100 3 99.5 1.5 58.4 61.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8000	200	9	27	27	27	400	120	7	9.9	12.1	61.6	66.8	1.6	9.7	97.0	88.5	
8000 300 9 24 6.5 21 400 120 7 9.9 9.1 3.61 67.0 1.9 1.5.3 9.8.0 86.7 10000 200 Maximal deflection critteria is not satisfied 10000 300 18 27 27 27 400 90 7 9.9 1.4.2 51.1 6.1 0.1 0.7 7.4 9.7 8.8.2 10000 300 18 27 27 27 400 90 7 9.9 4.8 45.3 51.1 6.4 9.4 8.8 8.8 8.8 4000 200 9 6.5 6.5 6.5 400 100 3 9.9 5.1 5.8 6.27 5.9 8.8 8.8 6.4 9.0 1.6 9.0 9.1 1.6 9.0 9.9 9.9 5.1 5.8 6.27 5.9 8.9 8.1 </td <td>8000</td> <td>250</td> <td>9</td> <td>27</td> <td>12</td> <td>24</td> <td>400</td> <td>120</td> <td>7</td> <td>9.9</td> <td>10.2</td> <td>47.1</td> <td>69.2</td> <td>0.4</td> <td>15.9</td> <td>99.5</td> <td>88.7</td>	8000	250	9	27	12	24	400	120	7	9.9	10.2	47.1	69.2	0.4	15.9	99.5	88.7	
8000 350 9 12 6.5 27 400 110 7 9.9 7.9 39.7 53.2 0.3 15.5 98.5 80.8 10000 250 T 7 9.9 14.2 59.5 66.0 0.7 57.4 99.7 88.2 10000 300 18 27 27 400 120 7 9.9 14.2 59.5 66.0 0.7 57.4 99.7 88.2 10000 200 9 6.5 6.5 15 400 130 3 9.9 4.8 43.1 53.8 18.2 0.5 98.8 88.6 4000 200 9 6.5 6.5 6.5 400 100 3 9.9 5.1 58.4 6.5 6.3 3.2 89.9 6000 200 12 2.6 5.2 14 00 100 5 9.9 5.3 35.8 4.29 1.7	8000	300	9	24	6.5	21	400	120	7	9.9	9.1	36.1	67.9	1.9	15.3	98.0	86.7	
10000 200 Maximal deflection criteria is not sutisfied 10000 300 18 27 27 27 400 120 7 99 14.2 58.5 66.0 0.7 57.4 99.7 88.2 10000 300 9 6.5 6.5 6.5 4.0 9.9 14.2 59.5 66.0 0.7 57.4 99.8 88.8 4000 200 9 6.5 6.5 6.5 4.0 100 3 9.9 4.8 43.1 53.8 1.82 0.9 8.1.8 90.4 4000 200 9 6.5 6.5 6.5 400 100 3 9.9 5.1 5.8.4 6.7 1.9.0 1.6.8 4.8 9.0 1.5 3.3 3.5 41.0 1.5.7 6.6 9.8 8.7 6000 200 2.2 2.4 2.4 400 100 5 9.9 5.3 3.5. 41.0 <td>8000</td> <td>350</td> <td>9</td> <td>12</td> <td>6.5</td> <td>27</td> <td>400</td> <td>110</td> <td>7</td> <td>9.9</td> <td>7.9</td> <td>39.7</td> <td>53.2</td> <td>0.3</td> <td>15.5</td> <td>98.5</td> <td>80.8</td>	8000	350	9	12	6.5	27	400	110	7	9.9	7.9	39.7	53.2	0.3	15.5	98.5	80.8	
10000250Maximal deflection ertieria is not sutisfied1000030018272740012079.914.259.560.00.757.499.788.2100003092.4212740013039.91.1.451.151.41.0.11.9.299.885.8400020096.56.56.54009039.94.843.153.818.20.988.884.1400030096.56.56.540010039.95.153.563.36.56.388.289.9600020012126.52.440012059.95.335.84.2.91.7.88.489.9600020012126.52.740012059.95.335.84.2.91.78.68.489.9600030096.56.51240010059.95.335.84.6.01.78.68.489.9600030092.72.42.440010079.91.45.86.72.73.38.49.21.61.78.49.91.61.61.94.83.19.41.61.94.83.19.41.61.78.88.61.61.89.9 <td>10000</td> <td>200</td> <td></td> <td colspan="14">Maximal deflection criteria is not satisfied</td>	10000	200		Maximal deflection criteria is not satisfied														
10000 300 18 27 27 27 400 10 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10	10000	250						Maxim	al def	lection crit	eria is nc	ot satisfie	d					
10000 350 9 24 21 27 400 90 7 9.9 11.4 54.1 61.1 0.1 19.2 99.8 85.8 40000 200 9 6.5 6.5 12 400 100 3 9.9 4.8 45.3 55.1 32.3 8.9 81.8 90.4 4000 300 9 6.5 6.5 6.5 450 120 3 9.9 5.1 53.5 62.7 51.9 12.6 99.1 93.1 4000 300 9 6.5 6.5 6.5 400 100 5 9.9 7.6 33.5 63.0 6.3 8.2 80.0 17.2 9.8 83.7 6000 300 9 6.5 6.5 12 400 100 5 9.9 5.3 33.5 41.0 7.7 8.6 98.4 99.0 6000 300 9 2.7 2.4 400 80 7 9.9 9.4 55.8 5.1 2.5 4.8 <	10000	300	18	27	27	27	400	120	7	9.9	14.2	59.5	66.0	0.7	57.4	99.7	88.2	
4000300906.56.56.540010039.94.85.15.36.25.99.140003006.56.56.540010039.95.15.86.56.36.23.28.06000200126.56.51240010059.96.33.54.01.09.88.360003009.06.56.51240010059.95.33.54.01.09.45.38.57.77.09.27.89.27.57.50.59.27.5	10000	350	9	24	21	27	400	90	7	9.9	11.4	54.1	61.1	0.1	19.2	99.8	85.8	
4000 200 9 6.5 6.5 6.5 6.5 6.5 6.5 6.5 4.00 90 3 9.9 4.8 45.3 5.1 32.3 8.9 81.8 90.4 4000 350 6.5 6.5 6.5 400 120 3 9.9 5.1 53.2 5.0 5.3 6.5 33.2 89.9 6000 200 12 24 6.5 2.4 400 120 5 9.9 7.6 35.2 6.0 3.6 8.4 9.2 7.8.5 6000 350 9 6.5 6.5 12 400 100 5 9.9 5.3 33.5 4.16 7.5 0.5 9.7 2.9 9.3 3.5.8 4.20 1.0 8.49 9.0 8000 300 9 2.4 9 2.7 400 8.0 7 9.9 9.4 5.8 65.1 2.5 4.8 9.4 4.9 4.6 1.5 2.7 3.3 9.8 8.4.9 9.0 1.0 <	q=5 KPa																	
4000 250 9 6.5 6.5 6.5 4.0 90 3 9.9 5.1 5.3.5 62.7 5.1.9 12.6 9.91 9.31 4000 300 92 6.5 6.5 6.5 4.00 100 3 9.9 5.1 53.6 62.7 5.0 1.7.2 9.9 8.8.8 9.9 6000 200 12 24 6.5 2.7 450 150 5 9.9 6.6 38.2 5.0 3.6 8.4 9.92 7.8.5 6000 300 9 6.5 6.5 2.1 400 100 5 9.9 5.3 35.8 4.2.9 1.7 8.6 9.4.8 89.9 6000 300 9 2.5 6.5 12 4.0 100 5 9.9 5.3 35.8 4.2.9 1.7 8.6 9.4.8 9.9 3.3 9.8 9.9 3.6 6.1.7 2.7 3.3 9.8 9.9 3.6 6.1 2.5 4.8 9.4.1 84.5	4000	200	9	6.5	6.5	12	400	130	3	9.9	4.8	43.1	53.8	18.2	0.5	98.8	88.6	
4000 300 9 6.5 6.5 6.5 450 120 3 9.9 5.1 53.5 6.27 51.9 12.6 9.1 93.1 6000 200 12 24 6.5 6.5 4.00 10.0 5 9.9 7.6 53.2 6.7 0.0 17.2 9.8 83.7 6000 250 12 12 6.5 2.7 450 10.0 5 9.9 6.6 38.2 56.0 3.6 8.4 9.2 78.5 6000 300 9 6.5 6.5 12 400 10.0 5 9.9 5.3 33.5 41.6 7.5 0.5 9.7 9.3 9.3 8000 200 - - Maximal deflection criteria is not satisfied - - 3.8 9.9 4.1 8.45 8000 300 9 21 6.5 27 400 120 7 9.9 7.3 29.4 6.6 1.9 4.1 58.2 10000 300	4000	250	9	6.5	6.5	6.5	400	90	3	9.9	4.8	45.3	55.1	32.3	8.9	81.8	90.4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4000	300	9	6.5	6.5	6.5	450	120	3	9.9	5.1	53.5	62.7	51.9	12.6	99.1	93.1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4000	350	6.5	6.5	6.5	6.5	400	100	3	9.9	5.1	58.4	65.5	63.3	6.5	33.2	89.9	
	6000	200	12	24	6.5	24	400	120	5	9.9	7.6	35.2	67.9	0.5	17.2	99.8	83.7	
	6000	250	12	12	6.5	27	450	150	5	9.9	6.6	38.2	56.0	3.6	8.4	99.2	78.5	
	6000	300	9	6.5	6.5	21	400	100	5	9.9	5.3	35.8	42.9	1.7	8.6	98.4	89.9	
8000200Maximal deflection criteria is not satisfied800025092724244008079.99.455.863.72.73.39.8.984.9800030092492740015079.98.239.865.12.54.894.184.580003509216.5274008079.98.239.865.12.54.894.184.510000250Maximal deflection criteria is not satisfied10000300927272740012079.910.654.961.01.99.697.785.81000030092.56.56.540010039.93.714.256.224.728.385.663.94000200126.56.56.540010039.93.697.836.134.644.725.451.4400030096.56.5184009039.93.697.836.134.644.725.451.4400030096.56.5184009039.93.697.836.134.644.725.451.4400030096.56.5184009039.9	6000	350	9	6.5	6.5	12	450	120	5	9.9	5.3	33.5	41.6	7.5	0.5	97.2	93.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8000	200						Maxim	al def	lection crit	eria is no	ot satisfie	d					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8000	250	9	27	24	24	400	80	7	9.9	9.4	55.8	63.7	2.7	3.3	98.9	84.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8000	300	9	24	9	27	400	150	7	9.9	8.2	39.8	65.1	2.5	4.8	94.1	84.5	
Maximal deflection criteria is not satisfied10000250Maximal deflection criteria is not satisfied10000300Maximal deflection criteria is not satisfied10000350927272740012079.910.654.961.01.99.699.785.8maximal deflection criteria is not satisfied $q=7.5 \ KPa$ 4000200126.56.5274008039.93.714.256.224.728.385.663.94000200126.56.56.540010039.93.767.371.082.022.288.857.6400030096.56.56.5184009039.93.767.371.082.022.288.857.6400030096.56.56.5184009039.93.767.371.082.022.288.857.6400030096.56.56.5184009079.95.521.820.76.83.194.453.640003001227182740010079.94.593.46.76.83.194.453.66000300122797906.36.6<	8000	350	9	21	6.5	27	400	80	7	9.9	7.3	29.4	60.6	1.9	4.1	58.2	80.0	
Maximal deflection criteria is not satisfied10000300Maximal deflection criteria is not satisfied10000350927272740012079.910.654.961.01.99.699.785.8TETE <e< th="">4000200126.56.5274008039.93.714.256.224.728.385.663.94000250126.56.56.540010039.93.767.371.082.022.288.857.6400030096.56.56.54009039.93.855.857.913.444.996.457.6400035096.56.54009039.93.855.857.913.444.996.457.6400030096.56.54009039.95.521.820.76.83.194.453.6600025012246.52740010079.94.593.463.70.597.972.798.16000350186.56.52740010079.94.593.463.70.597.972.798.16000350186.52740010079.97.26.6<</e<>	10000	200						Maxim	al def	lection crit	eria is nc	ot satisfie	d					
10000 300 Maximal deflection criteria is not satisfied 10000 350 9 27 27 400 120 7 9.9 10.6 54.9 61.0 1.9 9.6 99.7 85.8 e=7.5 KPa 4000 200 12 6.5 6.5 27 400 80 3 9.9 3.7 14.2 56.2 24.7 28.3 85.6 63.9 4000 200 12 6.5 6.5 6.5 400 100 3 9.9 3.7 14.2 56.2 24.7 28.3 85.6 63.9 4000 300 9 6.5 6.5 400 90 3 9.9 3.7 67.3 71.0 82.0 22.2 88.8 57.6 4000 300 9 6.5 6.5 400 90 3 9.9 3.8 55.8 57.9 13.4 44.9 96.4 57.6 6000 200 12 27 400 100 7 9.9 4.8	10000	250						Maxim	al def	lection crit	eria is no	ot satisfie	d					
10000 350 9 27 27 27 400 120 7 9.9 10.6 54.9 61.0 1.9 9.6 99.7 85.8 4000 200 12 6.5 6.5 27 400 80 3 9.9 3.7 14.2 56.2 24.7 28.3 85.6 63.9 4000 250 12 6.5 6.5 400 100 3 9.9 3.6 97.8 36.1 34.6 44.7 25.4 51.4 4000 300 9 6.5 6.5 18 400 90 3 9.9 3.7 67.3 71.0 82.0 22.2 88.8 57.6 4000 350 9 6.5 6.5 400 90 3 9.9 3.8 55.8 57.9 13.4 44.9 96.4 57.6 6000 250 12 27 18 27 400 100 7 9.9 5.5 21.8 20.7 6.8 3.1 94.4 53.6 600	10000	300						Maxim	al def	lection crit	eria is no	ot satisfie	d					
q=7.5 KPa 4000 200 12 6.5 6.5 27 400 80 3 9.9 3.7 14.2 56.2 24.7 28.3 85.6 63.9 4000 250 12 6.5 6.5 6.5 400 100 3 9.9 3.6 97.8 36.1 34.6 44.7 25.4 51.4 4000 300 9 6.5 6.5 18 400 90 3 9.9 3.7 67.3 71.0 82.0 22.2 88.8 57.6 4000 350 9 6.5 6.5 400 90 3 9.9 3.8 55.8 57.9 13.4 44.9 96.4 57.6 6000 200 12 27 18 27 400 100 7 9.9 5.5 21.8 20.7 6.8 3.1 94.4 53.6 6000 300 12 6.5 9.7 400 100 7 9.9 4.8 74.1 18.8 25.9 54.0	10000	350	9	27	27	27	400	120	7	9.9	10.6	54.9	61.0	1.9	9.6	99.7	85.8	
4000 200 12 6.5 6.5 27 400 80 3 9.9 3.7 14.2 56.2 24.7 28.3 85.6 63.9 4000 250 12 6.5 6.5 6.5 400 100 3 9.9 3.6 97.8 36.1 34.6 44.7 25.4 51.4 4000 300 9 6.5 6.5 18 400 90 3 9.9 3.7 67.3 71.0 82.0 22.2 88.8 57.6 4000 350 9 6.5 6.5 6.5 400 90 3 9.9 3.8 55.8 57.9 13.4 44.9 96.4 57.6 6000 200 12 27 18 27 400 100 7 9.9 5.5 21.8 20.7 6.8 3.1 94.4 53.6 6000 300 12 6.5 9 27 400 150 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7								q	=7.5 ŀ	KPa								
4000 250 12 6.5 6.5 6.5 400 100 3 9.9 3.6 97.8 36.1 34.6 44.7 25.4 51.4 4000 300 9 6.5 6.5 18 400 90 3 9.9 3.7 67.3 71.0 82.0 22.2 88.8 57.6 4000 350 9 6.5 6.5 6.5 400 90 3 9.9 3.8 55.8 57.9 13.4 44.9 96.4 57.6 6000 200 12 27 18 27 400 100 7 9.9 6.3 16.0 35.0 18.5 21.9 91.9 88.8 6000 300 12 6.5 9 27 400 150 7 9.9 4.8 74.1 18.8 25.9 54.0 90.6 24.1 6000 350 18 6.5 6.5 27 600 100 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7	4000	200	12	6.5	6.5	27	400	80	3	9.9	3.7	14.2	56.2	24.7	28.3	85.6	63.9	
4000 300 9 6.5 6.5 18 400 90 3 9.9 3.7 67.3 71.0 82.0 22.2 88.8 57.6 4000 350 9 6.5 6.5 6.5 400 90 3 9.9 3.8 55.8 57.9 13.4 44.9 96.4 57.6 6000 200 12 27 18 27 400 100 7 9.9 6.3 16.0 35.0 18.5 21.9 91.9 88.8 6000 250 12 24 6.5 27 400 100 7 9.9 5.5 21.8 20.7 6.8 3.1 94.4 53.6 6000 300 12 6.5 6.5 27 600 100 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7 98.1 8000 200 Maximal deflection criteria is not satisfied Maximal deflection criteria is not satisfied 97.7 9.8 93.9 97.4 7.7	4000	250	12	6.5	6.5	6.5	400	100	3	9.9	3.6	97.8	36.1	34.6	44.7	25.4	51.4	
4000 350 9 6.5 6.5 6.0 90 3 9.9 3.8 55.8 57.9 13.4 44.9 96.4 57.6 6000 200 12 27 18 27 400 100 7 9.9 6.3 16.0 35.0 18.5 21.9 91.9 88.8 6000 250 12 24 6.5 27 400 100 7 9.9 5.5 21.8 20.7 6.8 3.1 94.4 53.6 6000 300 12 6.5 9 27 400 150 7 9.9 4.8 74.1 18.8 25.9 54.0 90.6 24.1 6000 350 18 6.5 6.5 27 600 100 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7 98.1 8000 200 Maximal deflection criteria is not satisfied 8000 250 12 27 21 27 400 150 7 9.9 6.4	4000	300	9	6.5	6.5	18	400	90	3	9.9	3.7	67.3	71.0	82.0	22.2	88.8	57.6	
6000 200 12 27 18 27 400 100 7 9.9 6.3 16.0 35.0 18.5 21.9 91.9 88.8 6000 250 12 24 6.5 27 400 100 7 9.9 5.5 21.8 20.7 6.8 3.1 94.4 53.6 6000 300 12 6.5 9 27 400 150 7 9.9 4.8 74.1 18.8 25.9 54.0 90.6 24.1 6000 350 18 6.5 6.5 27 600 100 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7 98.1 8000 200 Maximal deflection criteria is not satisfied 8000 250 12 27 21 27 400 150 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 350 12 27 12 24 400 110 7 9.9 <td>4000</td> <td>350</td> <td>9</td> <td>6.5</td> <td>6.5</td> <td>6.5</td> <td>400</td> <td>90</td> <td>3</td> <td>9.9</td> <td>3.8</td> <td>55.8</td> <td>57.9</td> <td>13.4</td> <td>44.9</td> <td>96.4</td> <td>57.6</td>	4000	350	9	6.5	6.5	6.5	400	90	3	9.9	3.8	55.8	57.9	13.4	44.9	96.4	57.6	
6000 250 12 24 6.5 27 400 100 7 9.9 5.5 21.8 20.7 6.8 3.1 94.4 53.6 6000 300 12 6.5 9 27 400 150 7 9.9 4.8 74.1 18.8 25.9 54.0 90.6 24.1 6000 350 18 6.5 6.5 27 600 100 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7 98.1 8000 200 Maximal deflection criteria is not satisfied 8000 250 12 27 21 27 400 150 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 250 12 27 12 24 400 110 7 9.9 6.4 25.7 6.6 0.9 35.4 48.1 92.7 10000 250 Maximal deflection criteria is not satisfied 10000 Maximal de	6000	200	12	27	18	27	400	100	7	9.9	6.3	16.0	35.0	18.5	21.9	91.9	88.8	
6000 300 12 6.5 9 27 400 150 7 9.9 4.8 74.1 18.8 25.9 54.0 90.6 24.1 6000 350 18 6.5 6.5 27 600 100 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7 98.1 8000 200 Maximal deflection criteria is not satisfied 8000 200 Maximal deflection criteria is not satisfied 8000 250 12 27 21 27 400 150 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 350 12 27 21 24 400 110 7 9.9 6.4 25.7 6.6 0.9 35.4 48.1 92.7 10000 200 Maximal deflection criteria is not satisfied 10000 250 Maximal deflection criteria is not satisfied 10000 250 Maximal deflection criteria is not satisfied	6000	250	12	24	6.5	27	400	100	7	9.9	5.5	21.8	20.7	6.8	3.1	94.4	53.6	
6000 350 18 6.5 6.5 27 600 100 7 9.9 4.5 93.4 63.7 0.5 97.9 72.7 98.1 8000 200 Maximal deflection criteria is not satisfied Maximal deflection criteria is not satisfied Maximal deflection criteria is not satisfied 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 250 12 27 21 27 400 150 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 350 12 27 12 24 400 110 7 9.9 6.4 25.7 6.6 0.9 35.4 48.1 92.7 10000 200 Maximal deflection criteria is not satisfied Maximal deflection criteria is not satisfied </td <td>6000</td> <td>300</td> <td>12</td> <td>6.5</td> <td>9</td> <td>27</td> <td>400</td> <td>150</td> <td>7</td> <td>9.9</td> <td>4.8</td> <td>74.1</td> <td>18.8</td> <td>25.9</td> <td>54.0</td> <td>90.6</td> <td>24.1</td>	6000	300	12	6.5	9	27	400	150	7	9.9	4.8	74.1	18.8	25.9	54.0	90.6	24.1	
8000 200 Maximal deflection criteria is not satisfied 8000 200 Maximal deflection criteria is not satisfied 8000 250 12 27 21 27 400 150 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 350 12 27 12 24 400 110 7 9.9 6.4 25.7 6.6 0.9 35.4 48.1 92.7 10000 200 V Maximal deflection criteria is not satisfied Maximal deflection criteria is not satisfied 10000 250 V Maximal deflection criteria is not satisfied V<	6000	350	18	6.5	6.5	27	600	100	7	9.9	4.5	93.4	63.7	0.5	97.9	72.7	98.1	
8000 200 Maximal deflection criteria is not satisfied 8000 250 12 27 21 27 400 150 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 350 12 27 12 24 400 110 7 9.9 6.4 25.7 6.6 0.9 35.4 48.1 92.7 10000 200 V V Maximal deflection criteria is not satisfied V	8000	200						Maxim	al def	lection crit	eria is nc	ot satisfie	d					
8000 250 12 27 21 27 400 150 7 9.9 7.2 66.0 97.7 9.8 93.9 97.4 7.7 8000 350 12 27 12 24 400 110 7 9.9 6.4 25.7 6.6 0.9 35.4 48.1 92.7 10000 200 Maximal deflection criteria is not satisfied 10000 250 Maximal deflection criteria is not satisfied 10000 300 Maximal deflection criteria is not satisfied 10000 350 Maximal deflection criteria is not satisfied	8000	200						Maxim	al def	lection crit	eria is nc	ot satisfie	d					
8000 350 12 27 12 24 400 110 7 9.9 6.4 25.7 6.6 0.9 35.4 48.1 92.7 10000 200 Maximal deflection criteria is not satisfied Maximal deflection criteria is not satisfied 10000 300 Maximal deflection criteria is not satisfied 10000 350 Maximal deflection criteria is not satisfied	8000	250	12	27	21	27	400	150	7	9.9	7.2	66.0	97.7	9.8	93.9	97.4	7.7	
10000200Maximal deflection criteria is not satisfied10000250Maximal deflection criteria is not satisfied10000300Maximal deflection criteria is not satisfied10000350Maximal deflection criteria is not satisfied	8000	350	12	27	12	24	400	110	7	9.9	6.4	25.7	6.6	0.9	35.4	48.1	92.7	
10000250Maximal deflection criteria is not satisfied10000300Maximal deflection criteria is not satisfied10000350Maximal deflection criteria is not satisfied	10000	200						Maximal deflection criteria is not satisfied										
10000300Maximal deflection criteria is not satisfied10000350Maximal deflection criteria is not satisfied	10000	250						Maxim	al def	lection crit	eria is no	ot satisfie	d					
10000 350 Maximal deflection criteria is not satisfied	10000	300						Maxim	al def	lection crit	eria is no	ot satisfie	d					
	10000	350						Maxim	al def	lection crit	eria is no	ot satisfie	d					

The results showed that in almost all cases the leading criteria is maximal deflection $-g_3$. For the spans less than 6000 mm and total thickness of panel greater than 300 mm in some cases leading factor is maximal shear stress- g_4 . For loads grater than 5 KPa, in some cases the leading factor is maximal compression stress in top flange $-g_1$. The criteria of maximal local bending stress in top flange are satisfied in all cases with reserve more than 50%. The compressed flange buckling criteria is satisfied in all cases with reserve more than 50%. In the case when span is 10000 mm and total thickness of panel h=200 mm, then deflection criteria is satisfied only in case when q = 2KPa.

The contour plot of objective function that is approximated by second order polynomial depending on span L and total thickness h when q=2KPa is shown in Fig 3. The plot shows that there are minimum point when h=225mm and L=6500mm.

Fig. 3 Contour plot of objective function f(x) (kg/KN) depending on h and L, when q=2KPa.

The contour plot of objective function f(x) when L=6000 mm depending on total thickness of panel h and load q is shown in Fig 4. Minimal value of objective function f(x)=5..6 kg/kN is obtained when the load are maximal- grater than 5 KPa.

Fig. 4 Contour plot of objective function f(x) (kg/KN) depending on q and h, when L=6000 mm

During the process of optimization was discovered that the optimization procedure becomes more effective if used as two step optimization procedure. The first step is discrete parameter optimization with GA to identify the behavior of objective function in large design space. In the second step continuous parameter optimizations in the small design subspace that is identifier from the results of first step are done.

IV. CONCLUSION

Proposed a novel panel with curved plywood ribs structure and analysis method of its rational discrete geometrical and mechanical parameters by using Genetic algorithm optimization method.

Rational thickness of plywood elements, shape parameters of curved ribs with stiffening elements and density of foam of novel panel structure is obtained by using proposed method for the case if span varies form 4 to 10 m, total thickness of panel from 200 to 350 mm and uniformly distributed load on panel varies from 2 to 7.5 KPa. In the case if span is 8 m total thickness of panel is 250 mm and load is 3 KPa the rational parameters of panel are: thickness of curved plywood rib is 6.5 mm, thickness of compressed flange is 24 mm, thickness of tensioned flange is 9mm, thickness and width of plywood stiffener are 24 mm and 80mm, distance between shear stiffness diaphragms is 1000 mm, width of cylindrical shell is 400 mm and density of EPS foam is 9.9 kg/m³.

The proposed analysis method of rational discrete parameters of novel panel structure that is based on Genetic algorithm becomes more effective if it is combined with classical optimization methods for continuous design variables obtaining two step optimization method.

ACKNOWLEDGMENT

The work was supported by EU Funds within the framework of project "Support of RTU PhD studies".

REFERENCES

- J. Sliseris, K. Rocens, 2010. "Curvature Analysis for Composite with Orthogonal, Asymmetrical Multi-Layer Structure" *Journal of Civil Engineering and Management*, Vol. 16, No. 2, pp. 242-248, 2010.
- [2] J. Sliseris, K. Rocens, "Behaviour of multilayer sheet with technogical imperfection", in 10th International Conference "Modern Building Materials, Structures and Techniques", Lithuania, 2010, pp. 793-798.
- [3] K.A. Rocēns, 1979. "Technological regulations of the properties of wood" (in Russian), Rīga: Zinātne, 1979, ch 5.
- [4] C. Arya, "Desing of Structural Elements" London.: Spon Press, 2004, ch 6.
- [5] S. Thelanderson, H.J. Larsen 2003. "Timber Engineering" U.S.: John Willey & Sons LTD, 2003, pp. 169- 301.
- [6] S.S. Rao, "Engineering Optimization. Theory and Practise" 4th ed. New Jersey: John Willey & Sons Inc, 2009, ch. 13.
- [7] D.E.Goldberg, "Genetic Algorithms in Search, Optimization and Machine Linearing", MA: Addison-Wesley, Reading, 1989, ch 2.
- [8] S.S. Rao, T.S. Pan, A.K. Dhingra, V.B. Venkaya and V. Kumar, "Genetic evolution based optimization methods for engineering design" in Proceedings of the 3rd Air Force/NASA Symposium on Recent Advantages in Multidisciplinary Analysis and Optimization, San Francisko, Sept. 24-26. 1990, pp. 318-323.

- [9] D. Šešok, J. Mckus, R. Belevičius, A. Kačeniauskas. "Global optimization of grillages using Simulated annealing and high performance computing", *Journal of Civil engineering and Management*. Vol 16, No 1, pp. 95-101, 2010.
- [10] D. Šešok, R. Belevičius, "Global optimization of trusses with a modified Genetic Algorithm", *Journal of Civil Engineering and Management*, Vol 14, No 3, pp. 147-154, 2008.
- [11] A. Behravesh, M.M. Edabi, V. Rashtchi, "Optimization of Space Structures with Fuzzy Constrains Via Real Coded Genetic Algorithm (RCGA)", in Proceedings of the World Congress on Engineering, Vol II., London, U.K., 2008.
- [12] EN 13163. "Thermal insulation products for buildings- Factory made products of expanded polystyrene (EPS)- Specification".
- [13] EN 1991-1-1:2002, Eurocode 1: Actions on structures. Part 1-1: General actions – Densities, self-weight, imposed loads for building.
- [14] Eurocode 5: Design of timber structures Part 1-1: General- Common rules and rules for buildings.