Search results for: Exotic Statistical Distributions
892 Experimental Testbed to Compare 4G and 5G Industrial IoT Connections in Simulated Based Control System
Authors: Andrea Gelmini
Abstract:
This paper considers the advent of 5G and the use of it in a Based Control System (BCS), posing as a basic concept the question of what the real differences and practical improvements are compared to 4G. To this purpose, a testbed hardware simulator has been designed and built where identical machines with the same sensors and management systems will communicate with different radio access network connections. This allows an objective statistical comparison of performance on the real functioning and improvement of the infrastructure with the Industrial Internet of Things (IIoT) connected to it.
Keywords: 4G, 5G, BCS, eSIM, IIoT, SCADA, Testbed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344891 Monitorization of Junction Temperature Using a Thermal-Test-Device
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature.
Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management, measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712890 Effects of Intercropping Maize (Zea mays L.) with Jack Beans (Canavalia ensiformis L.) at Different Spacing and Weeding Regimes on Crops Productivity
Authors: Oluseun S. Oyelakin, Olalekan W. Olaniyi
Abstract:
A field experiment was conducted at Ido town in Ido Local Government Area of Oyo state, Nigeria to determine the effects of intercropping maize (Zea mays L.) with Jack bean (Canavalia ensiformis L.) at different spacing and weeding regimes on crops productivity. The treatments were 2 x 2 x 3 factorial arrangement involving two spatial crop arrangements. Spacing of 75 cm x 50 cm and 90 cm x 42 cm (41.667 cm) with two plants per stand resulted in plant population of approximately 53,000 plants/hectare. Also, Randomized Complete Block Design (RCBD) with two cropping patterns (sole and intercrop), three weeding regimes (weedy check, weeds once, and weed twice) with three replicates was used. Data were analyzed with SAS (Statistical Analysis System) and statistical means separated using Least Significant Difference (LSD) (P ≤ 0.05). Intercropping and crop spacing did not have significant influence on the growth parameters and yield parameters. The maize grain yield of 1.11 t/ha obtained under sole maize was comparable to 1.05 t/ha from maize/jack beans. Weeding regime significantly influenced growth and yields of maize in intercropping with Jack beans. Weeding twice resulted in significantly higher growth than that of the other weeding regimes. Plant height at 6 Weeks After Sowing (WAS) under weeding twice regime (3 and 6 WAS) was 83.9 cm which was significantly different from 67.75 cm and 53.47 cm for weeding once (3 WAS) and no weeding regimes respectively. Moreover, maize grain yield of 1.3 t/ha obtained from plots weeded twice was comparable to that of 1.23 t/ha from single weeding and both were significantly higher than 0.71 t/ha maize grain yield obtained from the no weeding control. The dry matter production of Jack beans reduced at some growth stages due to intercropping of maize with Jack beans though with no significance effect on the other growth parameters of the crop. There was no effect on the growth parameters of Jack beans in maize/jack beans intercrop based on cropping spacing while comparable growth and dry matter production in Jack beans were produced in maize/Jack beans mixture with single weeding.
Keywords: Crop spacing, intercropping, growth parameter, weeding regime, sole cropping, week after sowing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900889 Profile Calculation in Water Phantom of Symmetric and Asymmetric Photon Beam
Authors: N. Chegeni, M. J. Tahmasebi Birgani
Abstract:
Nowadays, in most radiotherapy departments, the commercial treatment planning systems (TPS) used to calculate dose distributions needs to be verified; therefore, quick, easy-to-use and low cost dose distribution algorithms are desirable to test and verify the performance of the TPS. In this paper, we put forth an analytical method to calculate the phantom scatter contribution and depth dose on the central axis based on the equivalent square concept. Then, this method was generalized to calculate the profiles at any depth and for several field shapes regular or irregular fields under symmetry and asymmetry photon beam conditions. Varian 2100 C/D and Siemens Primus Plus Linacs with 6 and 18 MV photon beam were used for irradiations. Percentage depth doses (PDDs) were measured for a large number of square fields for both energies, and for 45º wedges which were employed to obtain the profiles in any depth. To assess the accuracy of the calculated profiles, several profile measurements were carried out for some treatment fields. The calculated and measured profiles were compared by gamma-index calculation. All γ–index calculations were based on a 3% dose criterion and a 3 mm dose-to-agreement (DTA) acceptance criterion. The γ values were less than 1 at most points. However, the maximum γ observed was about 1.10 in the penumbra region in most fields and in the central area for the asymmetric fields. This analytical approach provides a generally quick and fairly accurate algorithm to calculate dose distribution for some treatment fields in conventional radiotherapy.
Keywords: Dose distribution, equivalent field, asymmetric field, irregular field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046888 A Discrete Event Simulation Model to Manage Bed Usage for Non-Elective Admissions in a Geriatric Medicine Speciality
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
Over the past decade, the non-elective admissions in the UK have increased significantly. Taking into account limited resources (i.e. beds), the related service managers are obliged to manage their resources effectively due to the non-elective admissions which are mostly admitted to inpatient specialities via A&E departments. Geriatric medicine is one of specialities that have long length of stay for the non-elective admissions. This study aims to develop a discrete event simulation model to understand how possible increases on non-elective demand over the next 12 months affect the bed occupancy rate and to determine required number of beds in a geriatric medicine speciality in a UK hospital. In our validated simulation model, we take into account observed frequency distributions which are derived from a big data covering the period April, 2009 to January, 2013, for the non-elective admission and the length of stay. An experimental analysis, which consists of 16 experiments, is carried out to better understand possible effects of case studies and scenarios related to increase on demand and number of bed. As a result, the speciality does not achieve the target level in the base model although the bed occupancy rate decreases from 125.94% to 96.41% by increasing the number of beds by 30%. In addition, the number of required beds is more than the number of beds considered in the scenario analysis in order to meet the bed requirement. This paper sheds light on bed management for service managers in geriatric medicine specialities.
Keywords: Bed management, bed occupancy rate, discrete event simulation, geriatric medicine, non-elective admission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910887 Assessment of Obesity Parameters in Terms of Metabolic Age above and below Chronological Age in Adults
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Chronologic age (CA) of individuals is closely related to obesity and generally affects the magnitude of obesity parameters. On the other hand, close association between basal metabolic rate (BMR) and metabolic age (MA) is also a matter of concern. It is suggested that MA higher than CA is the indicator of the need to improve the metabolic rate. In this study, the aim was to assess some commonly used obesity parameters, such as obesity degree, visceral adiposity, BMR, BMR-to-weight ratio, in several groups with varying differences between MA and CA values. The study comprises adults, whose ages vary between 18 and 79 years. Four groups were constituted. Group 1, 2, 3 and 4 were composed of 55, 33, 76 and 47 adults, respectively. The individuals exhibiting -1, 0 and +1 for their MA-CA values were involved in Group 1, which was considered as the control group. Those, whose MA-CA values varying between -5 and -10 participated in Group 2. Those, whose MAs above their real ages were divided into two groups [Group 3 (MA-CA; from +5 to + 10) and Group 4 (MA-CA; from +11 to + 12)]. Body mass index (BMI) values were calculated. TANITA body composition monitor using bioelectrical impedance analysis technology was used to obtain values for obesity degree, visceral adiposity, BMR and BMR-to-weight ratio. The compiled data were evaluated statistically using a statistical package program; SPSS. Mean ± SD values were determined. Correlation analyses were performed. The statistical significance degree was accepted as p < 0.05. The increase in BMR was positively correlated with obesity degree. MAs and CAs of the groups were 39.9 ± 16.8 vs 39.9 ± 16.7 years for Group 1, 45.0 ± 15.3 vs 51.4 ± 15.7 years for Group 2, 47.2 ± 12.7 vs 40.0 ± 12.7 years for Group 3, and 53.6 ± 14.8 vs 42 ± 14.8 years for Group 4. BMI values of the groups were 24.3 ± 3.6 kg/m2, 23.2 ± 1.7 kg/m2, 30.3 ± 3.8 kg/m2, and 40.1 ± 5.1 kg/m2 for Group 1, 2, 3 and 4, respectively. Values obtained for BMR were 1599 ± 328 kcal in Group 1, 1463 ± 198 kcal in Group 2, 1652 ± 350 kcal in Group 3, and 1890 ± 360 kcal in Group 4. A correlation was observed between BMR and MA-CA values in Group 1. No correlation was detected in other groups. On the other hand, statistically significant correlations between MA-CA values and obesity degree, BMI as well as BMR/weight were found in Group 3 and in Group 4. It was concluded that upon consideration of these findings in terms of MA-CA values, BMR-to-weight ratio was found to be much more useful indicator of the severe increase in obesity development than BMR. Also, the lack of associations between MA and BMR as well as BMR-to-weight ratio emphasize the importance of consideration of MA-CA values rather than MA.
Keywords: Basal metabolic rate, chronologic age, metabolic age, obesity degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055886 Embedding the Dimensions of Sustainability into City Information Modelling
Authors: Ali M. Al-Shaery
Abstract:
The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city’, and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embed sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.
Keywords: Information modelling, smart city, sustainable city, sustainability dimensions, sustainability criteria, city development planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177885 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product
Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu
Abstract:
The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.Keywords: Aesthetics, crease line, cropped straight leg pants, knee width.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791884 An Anthropometric Index Capable of Differentiating Morbid Obesity from Obesity and Metabolic Syndrome in Children
Authors: Mustafa M. Donma
Abstract:
Circumference measurements may give meaningful information about the varying stages of obesity. Some formulas may be derived from a number of body circumference measurements to estimate body fat. Waist (WC), hip (HC) and neck (NC) circumferences are currently the most frequently used measurements. The aim of this study was to develop a formula derived from these three anthropometric measurements for the differential diagnosis of morbid obesity with and without metabolic syndrome (MetS), MOMetS+ and MOMetS-, respectively. 187 children were recruited from the pediatrics outpatient clinic of Tekirdag Namik Kemal University, Faculty of Medicine. Signed informed consent forms were taken from the participants. The study was carried out according to the Helsinki Declaration. The study protocol was approved by the institutional non-interventional ethics committee of Tekirdag Namik Kemal University Medical Faculty. The study population was divided into four groups as normal-body mass index (N-BMI) (n = 35), obese (OB) (n = 44), morbid obese (MO) (n = 75) and MetS (n = 33). Age- and gender-adjusted BMI percentile values were used for the classification of groups. The children in MetS group were selected based upon the nature of the MetS components described as MetS criteria. Anthropometric measurements, laboratory analysis and statistical evaluation confined to study population were performed. BMI values were calculated. A circumference index, advanced Donma circumference index (ADCI) was presented as WC*HC/NC. The statistical significance degree was chosen as p < 0.05. BMI values were 17.7 ± 2.8, 24.5 ± 3.3, 28.8 ± 5.7, 31.4 ± 8.0 kg/m2, for N-BMI, OB, MO, MetS groups (p = 0.001), respectively. An increasing trend from N-BMI to MetS was observed. However, the increase in MetS group compared to MO group was not significant. For the new index, significant differences were obtained between N-BMI and OB, MO, MetS groups (p = 0.001). A significant difference between MO and MetS groups was detected (p = 0.043). A significant correlation was found between BMI and ADCI. In conclusion, in spite of the strong correlation between BMI and ADCI values obtained when all groups were considered, ADCI, but not BMI, was the index, which was capable of differentiating cases with morbid obesity from cases with morbid obesity and MetS.
Keywords: Anthropometry, body mass index, childhood obesity, body circumference, metabolic syndrome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72883 Personalizing Human Physical Life Routines Recognition over Cloud-Based Sensor Data Via Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS (Micro-Electro-Mechanical Systems) sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study presents state-of-the-art techniques for recognizing static and dynamic patterns and forecasting those challenging activities from multi-fused sensors. Furthermore, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, raw data were processed with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.
Keywords: Artificial intelligence, machine learning, gait analysis, local binary pattern, statistical features, micro-electro-mechanical systems, maximum relevance and minimum redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22882 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi
Abstract:
Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.
Keywords: Lab-on-chip, micro-mixer, OpenFOAM, PDMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791881 Computer Aided X-Ray Diffraction Intensity Analysis for Spinels: Hands-On Computing Experience
Authors: Ashish R. Tanna, Hiren H. Joshi
Abstract:
The mineral having chemical compositional formula MgAl2O4 is called “spinel". The ferrites crystallize in spinel structure are known as spinel-ferrites or ferro-spinels. The spinel structure has a fcc cage of oxygen ions and the metallic cations are distributed among tetrahedral (A) and octahedral (B) interstitial voids (sites). The X-ray diffraction (XRD) intensity of each Bragg plane is sensitive to the distribution of cations in the interstitial voids of the spinel lattice. This leads to the method of determination of distribution of cations in the spinel oxides through XRD intensity analysis. The computer program for XRD intensity analysis has been developed in C language and also tested for the real experimental situation by synthesizing the spinel ferrite materials Mg0.6Zn0.4AlxFe2- xO4 and characterized them by X-ray diffractometry. The compositions of Mg0.6Zn0.4AlxFe2-xO4(x = 0.0 to 0.6) ferrites have been prepared by ceramic method and powder X-ray diffraction patterns were recorded. Thus, the authenticity of the program is checked by comparing the theoretically calculated data using computer simulation with the experimental ones. Further, the deduced cation distributions were used to fit the magnetization data using Localized canting of spins approach to explain the “recovery" of collinear spin structure due to Al3+ - substitution in Mg-Zn ferrites which is the case if A-site magnetic dilution and non-collinear spin structure. Since the distribution of cations in the spinel ferrites plays a very important role with regard to their electrical and magnetic properties, it is essential to determine the cation distribution in spinel lattice.
Keywords: Spinel ferrites, Localized canting of spins, X-ray diffraction, Programming in Borland C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3807880 Scenario Recognition in Modern Building Automation
Authors: Roland Lang, Dietmar Bruckner, Rosemarie Velik, Tobias Deutsch
Abstract:
Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.Keywords: Building automation, ubiquitous computing, scenariorecognition, surveillance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645879 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174878 The Effect Particle Velocity on the Thickness of Thermally Sprayed Coatings
Authors: M. Jalali Azizpour, H. Mohammadi Majd
Abstract:
In this paper, the effect of WC-12Co particle velocity in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.
Keywords: Grinding, HVOF, Thermal spray, WC-Co.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366877 Combining Bagging and Additive Regression
Authors: Sotiris B. Kotsiantis
Abstract:
Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.
Keywords: Regressors, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642876 AudioMine: Medical Data Mining in Heterogeneous Audiology Records
Authors: Shaun Cox, Michael Oakes, Stefan Wermter, Maurice Hawthorne
Abstract:
We report on the results of a pilot study in which a data-mining tool was developed for mining audiology records. The records were heterogeneous in that they contained numeric, category and textual data. The tools developed are designed to observe associations between any field in the records and any other field. The techniques employed were the statistical chi-squared test, and the use of self-organizing maps, an unsupervised neural learning approach.
Keywords: Audiology, data mining, chi-squared, self-organizing maps
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673875 A Constrained Clustering Algorithm for the Classification of Industrial Ores
Authors: Luciano Nieddu, Giuseppe Manfredi
Abstract:
In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382874 A Study of Neuro-Fuzzy Inference System for Gross Domestic Product Growth Forecasting
Authors: Ε. Giovanis
Abstract:
In this paper we present a Adaptive Neuro-Fuzzy System (ANFIS) with inputs the lagged dependent variable for the prediction of Gross domestic Product growth rate in six countries. We compare the results with those of Autoregressive (AR) model. We conclude that the forecasting performance of neuro-fuzzy-system in the out-of-sample period is much more superior and can be a very useful alternative tool used by the national statistical services and the banking and finance industry.Keywords: Autoregressive model, Forecasting, Gross DomesticProduct, Neuro-Fuzzy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604873 Clustering Categorical Data Using Hierarchies (CLUCDUH)
Authors: Gökhan Silahtaroğlu
Abstract:
Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).Keywords: Clustering, tree, split, pruning, entropy, gini.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558872 Study on the Effect of Pre-Operative Patient Education on Post-Operative Outcomes
Authors: Chaudhary Itisha, Shankar Manu
Abstract:
Patient satisfaction represents a crucial aspect in the evaluation of health care services. Preoperative teaching provides the patient with pertinent information concerning the surgical process and the intended surgical procedure as well as anticipated patient behavior (anxiety, fear), expected sensation, and the probable outcomes. Although patient education is part of Accreditation protocols, it is not uniform at most places. The aim of this study was to try to assess the benefit of preoperative patient education on selected post-operative outcome parameters; mainly, post-operative pain scores, requirement of additional analgesia, return to activity of daily living and overall patient satisfaction, and try to standardize few education protocols. Dependent variables were measured before and after the treatment on a study population of 302 volunteers. Educational intervention was provided by the Investigator in the preoperative period to the study group through personal counseling. An information booklet contained detailed information was also provided. Statistical Analysis was done using Chi square test, Mann Whitney u test and Fischer Exact Test on a total of 302 subjects. P value <0.05 was considered as level of statistical significance and p<0.01 was considered as highly significant. This study suggested that patients who are given a structured, individualized and elaborate preoperative education and counseling have a better ability to cope up with postoperative pain in the immediate post-operative period. However, there was not much difference when the patients have had almost complete recovery. There was no difference in the requirement of additional analgesia among the two groups. There is a positive effect of preoperative counseling on expected return to the activities of daily living and normal work schedule. However, no effect was observed on the activities in the immediate post-operative period. There is no difference in the overall satisfaction score among the two groups of patients. Thus this study concludes that there is a positive benefit as suggested by the results for pre-operative patient education. Although the difference in various parameters studied might not be significant over a long term basis, they definitely point towards the benefits of preoperative patient education.Keywords: Patient education, post-operative pain, patient satisfaction, post-operative outcome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3347871 On Musical Information Geometry with Applications to Sonified Image Analysis
Authors: Shannon Steinmetz, Ellen Gethner
Abstract:
In this paper a theoretical foundation is developed to segment, analyze and associate patterns within audio. We explore this on imagery via sonified audio applied to our segmentation framework. The approach involves a geodesic estimator within the statistical manifold, parameterized by musical centricity. We demonstrate viability by processing a database of random imagery to produce statistically significant clusters of similar imagery content.
Keywords: Sonification, musical information geometry, image content extraction, automated quantification, audio segmentation, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432870 Undergraduate Students’ Attitude towards the Statistics Course
Authors: Somruay Apichatibutarapong
Abstract:
The purpose of this study was to address and comparison of the attitudes towards the statistics course for undergraduate students. Data were collected from 120 students in Faculty of Sciences and Technology, Suan Sunandha Rajabhat University who enrolled in the statistics course. The quantitative approach was used to investigate the assessment and comparison of attitudes towards statistics course. It was revealed that the overall attitudes somewhat agree both in pre-test and post-test. In addition, the comparison of students’ attitudes towards the statistic course (Form A) has no difference in the overall attitudes. However, there is statistical significance in all dimensions and overall attitudes towards the statistics course (Form B).
Keywords: Statistics attitude, Student’s attitude, Statistics, Attitude test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608869 Analysing and Classifying VLF Transients
Authors: Ernst D. Schmitter
Abstract:
Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.
Keywords: Transient signals, statistics, wavelets, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881868 Economics of Oil and Its Stability in the Gulf Region
Authors: Al Mutawa A. Amir, Liaqat Ali, Faisal Ali
Abstract:
After the World War II, the world economy was disrupted and changed due to oil and its prices. The research in this paper presents the basic statistical features and economic characteristics of the Gulf economy. The main features of the Gulf economies and its heavy dependence on oil exports, its dualism between modern and traditional sectors and its rapidly increasing affluences are particularly emphasized. In this context, the research in this paper discussed the problems of growth versus development and has attempted to draw the implications for the future economic development of this area.
Keywords: Oil prices, Gulf Cooperation Council, economic growth, Gulf oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159867 Application of Reliability Prediction Model Adapted for the Analysis of the ERP System
Authors: F. Urem, K. Fertalj, Ž. Mikulić
Abstract:
This paper presents the possibilities of using Weibull statistical distribution in modeling the distribution of defects in ERP systems. There follows a case study, which examines helpdesk records of defects that were reported as the result of one ERP subsystem upgrade. The result of the applied modeling is in modeling the reliability of the ERP system from a user perspective with estimated parameters like expected maximum number of defects in one day or predicted minimum of defects between two upgrades. Applied measurement-based analysis framework is proved to be suitable in predicting future states of the reliability of the observed ERP subsystems.
Keywords: ERP, reliability, Weibull
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318866 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994865 Can Career Advancement and Job Security Act as Collaterals for Commitment? Evidence from the Hotel Industry of Malaysia
Authors: Aizzat Mohd. Nasurdin, Noor Hazlina Ahmad, Cheng Ling Tan
Abstract:
This study aims to examine the role of career advancement and job security as predictors of employee commitment to their organization. Data was collected from 580 frontline employees attached to two departments of 29 luxury hotels in Peninsular Malaysia. Statistical results using Partial Least Squares technique provided support for the proposed hypotheses. In view of the findings, theoretical and practical implications are discussed.
Keywords: Organizational commitment, career advancement, job security, frontline employees, luxury hotels, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716864 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick
Abstract:
Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.Keywords: SPC, MSA, gauge capability, Cg, Cgk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5182863 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings
Authors: M. Jalali Azizpour, H. Mohammadi Majd
Abstract:
In this paper, the effect of WC-12Co particle temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.
Keywords: HVOF, Temperature, Thickness, Velocity, WC- 12Co.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967