
On Musical Information Geometry with
Applications to Sonified Image Analysis

Shannon Steinmetz, Ellen Gethner

Abstract—In this paper a theoretical foundation is developed to
segment, analyze and associate patterns within audio. We explore
this on imagery via sonified audio applied to our segmentation
framework. The approach involves a geodesic estimator within
the statistical manifold, parameterized by musical centricity. We
demonstrate viability by processing a database of random imagery to
produce statistically significant clusters of similar imagery content.

Keywords—Sonification, musical information geometry, image
content extraction, automated quantification, audio segmentation,
pattern recognition.

I. INTRODUCTION

MATHEMATICALLY speaking, audio analysis tends

to involve a fairly narrow sense making apparatus.

Regardless of the genre of technology, most researchers rely on

some form of statistical interrogation. This includes traditional

signal processing (DSP), artificial intelligence and machine

learning (AI/ML), or both. AI/ML has changed the general

approach; however, statistical interrogation remains central.

AI/ML commonly employs convolutional neural networks

(CNN) and support vector machines (SVN) [22], [12]. These

still involve statistical divergence from a regression line, or

hyperplane. Information geometry (IG) purports to have an

advantage as observed by Cont, using distortion measures
as the primary means of analysis. IG also offers a range

of opportunities where various classes of information can be

mapped to an estimator, or probability model. Unlike AI/ML,

IG does not require a posteriori knowledge of data, but

remains reliant on statistical inference and divergence. The

same is true for music information retrieval (MIR), much of

which was originally based around self similarity [11] and has

begun to employ machine learning. MIR provides complex

knowledge assessment in genre classification, timbre, “query

by humming” and emotional recognition (MER) [19], [16].

Our analysis fits underneath the MIR/IG umbrella insofar as

audio segmentation is concerned, but we take the statistical

analysis a step further into the geometry of music.

We propose a means to analyze audio content using the

foundations of information geometry, motivated by musical

geometry and applied to sonified audio. This is demonstrated

via pseudo-image content retrieval. We transitively associate

information moving from imagery → audio → data → cluster.

This seemingly non-sequitur yields a profound connection

within the nature of audio geometry. Recall, fundamental

frequencies aggregate musical chords and have underpinnings

in the Fibonacci sequence and golden-ratio. Both are directly

related to naturally occurring phenomena [2], [28]. Every
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waveform has an inherent geometry and the theoretical basis

connecting audio to musical geometry is well established [27].

Sonification is the process of converting raw data into audio

for the purposes of evaluation. Sonified audio tends to break

from traditional sense making analysis such as MIR. This is

because it does not benefit from assumptions involving the

minimal guarantee to the listener of pleasure, composition,

or sensible melody. Historically, interesting problems have

been solved using sonification, but the use of the technology

is not common. In 1979 Fred Scarf was one of the first

scientists to use sonification on the Voyager II plasma wave

research project [29]. This analysis led baffled scientists to

determine micro-asteroid perturbations buried within the noise.

In modern times the Laser Interferometer Gravitational-Wave

Observatory (LIGO) identified chirp in gravitational wave

signals from binary inspirals using sonification [14]. These

events are often singular, unpredictable and require new and

innovative methodology. By limiting the domain of inquiry we

only limit innovation.

In the present paper we develop a framework using

information gain and musical geometry to exploit gradient

patterns within imagery. This is done through the use

of sonified audio. Individually, these technologies are

relatively straightforward; however, their combined use

creates a complicated set of interactions. We will focus on

audio segmentation using likelihood estimation within the

information manifold. Structural predictors, combined with

musical quantifiers map audio to correlated geometric curves.

The correlated curves create image clusters having similar

content.

This paper is organized as follows. Section II provides a

refresher on information geometry and our audio segmentation

approach. Section III discusses musical geometry as a

predictor of audio segmentation and a model for calculating

what is known as musical centricity. Section IV lays out

a support architecture for sonification using the proposed

information framework and defines a conic sonifier. We

conclude the study in Section V with an experiment involving

image content association based on the sonifier and proposed

information framework.

II. INFORMATION GEOMETRY AND EXPONENTIAL

PREDICTORS

Probability distributions are commonly used to predict the

likelihood of occurrence of a discrete series of events. Various

distributions have curvature favoring an activity based on

observed behavior. Most scientists and engineers rely on

two dimensional distributions, where a random variable X
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is supplied in the form of a function f(X = x) ∈ [0, 1].
Information geometry, when tailored to a statistical surface,

allows us to consider a space of multiple simultaneous

distributions. In this space we have f(X = x |θ) with

coordinates θ = (θ1, θ2) and manifold M = {f(x |θ)}.

Under certain regularity conditions this surface is treated

as a set of very small Euclidian neighborhoods, with every

point p ∈ M having a local tangent plane Tp. Each tangent

plane induces a product space allowing for measurement of

lengths, distances, curves and other metrics. Assuming f is

convex, when combined with a metric tensor it constitutes

a Riemannian manifold (M, g) [5]. The metric tensor g is

computed using partial derivatives based on Fisher Information

[21], [26].

gij = E

[
∂ log p(x|θ)

∂θi

∂ log p(x|θ)
∂θj

]
. (1)

This metric tensor is a pseudo-projective coefficient creating

relative distances within the local tangent plane. For example,

using Einstein notation, one measures the invariant length of

vector v

||v · v||2 = gij(v
ivj) [17].

When a Riemannian manifold is equipped with an affine

connection (M, g,∇) it constitutes an Information Geometry
(IG) [4], [9]. Affine connections are largely dependent on

infinitesimal, local transitions between tangent bases. The

following notation is commonly used throughout information

geometry ∂k = ∂
∂θk

= ∂f(x | θ)
∂θk

. The derivation of intrinsic,

or extrinsic products that allow us to traverse a manifolds

curvature have a compact notation in the form of a Christoffel

symbol.

Γk
ij =

1

2
gkm(∂jgim + ∂igjm − ∂mgij). (2)

This particular version is a Christoffel symbol of the second

kind, known to be a torsion free metric compatible Levi-Civita

connection [17]. Levi-Civita facilitates the intrinsic geometry

of a surface by allowing us to view the surface from a bugs

eye view, removing the need for a reference position, or origin.

When this coefficient is combined with the geodesic equation

∂2uk

∂λ2
= −Γk

ij

∂ui

∂λ

∂uj

∂λ
. (3)

We get a smooth, shortest path having no local acceleration

over the information manifold.

A. Exponential Family Distributions

Even the basics of information geometry can be

mathematically intense. Luckily we have extensive research

on a particular type of manifold known as the exponential
family [3], [5], [9], [17]. This distribution constitutes an

information geometry [3], [6] and although we do not leverage

the following fact, it is also exponentially flat (e-flat). A given

manifold is exponentially flat when there exists

E

[
∂2

∂θi∂θj
log p(x,θ)

∂

∂θk
log p(x,θ)

]
= 0 (4)

for all i, j, k identically [3]. This surface forms an

e-affine coordinate system in θ and allows us to treat

linearly parameterized intersecting geodesic curves as a

pseudo-orthogonal coordinate system. The following is the

exponential family in standard form.

p(x |θ) = h(x) eθ
TT (x)−ψ(θ) [3], [7], (5)

where θ is the canonical, or natural parameters and T is

a factorable function of x. ψ(θ) is known as the potential

function, or cumulant. h(x) is a constant, independent of the

potential function. The cumulant ψ(θ) is both dually flat and

convex, equivalent to the log estimator ψ(θ) = −log p(x |θ)
[5], [3]. The log estimate is twice differentiable at every point

within regular bounds, hence it is smooth. Many well known

distributions can be written in an exponential form such as

the Gaussian, Multivariate and Gamma distributions, to name

a few.

The exponential family is stable for models that are

censored, marginal, or truncated [10]. The Gamma distribution

is a member of the exponential family.

p(x) =
βαxα−1exβ

Γ(α)
(6)

Gamma allows for transitions between Gaussian,

pseudo-exponential and skewed curves, all depending

on the given model (θ).

B. Geometry Based Prediction

Given audio in the form of pulse code modulation (PCM)

we divide audio into geometrically consistent segments. Each

segment is a series of frames, each having a duration relevant

to the underlying content. We do this by predicting model

parameters and treating them as segmentation rules

(α, β) = (θ1,
1

θ2
) = (duration,

1

frame count
).

An appropriate mapping is necessary to take model

parameters from the Gamma domain (θ1, θ2) to duration and

frame count. Empirically, we found 2 ≤ θ1 ≤ 5 and .4 ≤ θ2 ≤
1 where fθ1(θ1) �→ [100, 1000]ms and fθ2(θ2) �→ [2, 10] for

time and frame count, respectively.

Assuming Ω = samples/millisecond, a segment is defined

as a series of frames X = {x1, x2, · · · , xN} where x ∈ Z

is amplitude. This implies duration N/Ω = fθ1(θ1) and

frame count X = {X1, X2, · · · , XM |M = fθ2(θ2)}. The

frequency spectrum of a given frame is F = FFT (Xi). In

order to simplify the mathematics and ensure smoothness, the

information manifold M is based on log p(x |θ) where p is

the Gamma Distribution. A derivation of suitable metric tensor

and Christoffel symbol, can be found in [8].

To quantify an audio segment, the time series is mapped to

a curve Q : X → S such that S = {s1, s2, · · · } where s =
{score, θ1, θ2} for each segment. Score will be discussed later,

but it represents a quantified measure of underlying musical

geometry.

Every segmentation interval is scored and a previous score

is used to determine the next model based on our predictor

P (x) = ep(x | θ).
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Maximum likelihood is determined by searching the geodesic

curve. The model to yield the highest probability given the

previous score is selected as the new model. This becomes

the next segmentation rule and we continue in this way

until end of file is reached. Many geodesic curves can be

used, but the following parameterization was found to be

effective (2, 0.997, 0.800,−0.067). This initial four parameter

vector is a solution to the geodesic curve where we have

(θ1, ∂θ1, θ2, ∂θ2). The geodesic equation is a second order

ODE, but is solved numerically using the Runge-Kutta method

for first order ODE’s [1]. The curve is stored and tagged to

the original audio meta-data.

III. CENTRICITY QUANTIFIER

The concept of centricity arises from the five fundamental

properties of music argued by mathematician and music

theorist Dmitri Tymoczko. Tymoczko devised a set of what he

calls conjunct melodic motion, harmonic consistency, acoustic
consonance and centricity found in any form of audio that

can be called music [27]. Tymoczko offers the caveat that

a subset of these properties are largely found in western

music. Formally, the full quantification of all these musical

properties would necessarily require us to leverage some, or

all of the existing pitch processing literature. We have state of

the art analysis tools for determining pitch characteristics [23],

timbre/genre [20] and instrumentation [12]. Many methods are

based on machine learning and use MEL-ceptrum, or CUSUM

event detection. Fortunately, centricity can be determined

using a much simpler approach. Centricity is defined by

the claim; “over moderate spans of time, one note is heard
as being more prominent than the others, appearing more
frequently and serving as a goal of musical motion.”

Our mathematical interpretation of this concept may not

be precisely identical; however, we draw inspiration from

Tymoczko’s work. We complicate the original definition of

centricity by assuming a central frequency envelope based on

prominence.

Definition 1. Given a time series as a sequence of equally
sized frames, centricity is the phenomena wherein the
frequency spectra sustains a consistent centroid within the
prominent envelope of the respective frame.

In this scenario prominence refers to the frequency peak

with the largest amplitude. This is not limited to only a single

peak, which is highly dependent on the size of the selected

frame.

Fig. 1 Visual depiction of the Stretch Method: This shows the motion of 
the centric region relative to the central frequency

A. Envelope Detection and Centric Region

There are many ways to measure centricity as we have

defined it, such as spectral centroid which works well with the

short-time fourier transforms (STFT) [16]. The selection of the

envelope is important to the centricity calculation, but before

discussing how the envelope is chosen let us build intuition

on how our centricity algorithm works.

Imagine you have a rubber band that is cut, taking it from

genus 1 to genus 0. You then attach one end to a fixed point

on an infinite line. Next, create a fixed axis at that same

attachment position, but orthogonal to the infinite line. As

you stretch the rubber band in either direction (assume we

are stuck in two dimensions) the acute angular region carved

out between the orthogonal vector and the rubber band, over

a series of pulls, will have a maximum angle. This angle will

be no greater than π
2 , where ±π

2 is somewhere at negative, or

positive infinity. Fig. 1 depicts the stretch method algorithm.

This provides the algorithm for centricity which takes samples

of the time series at some interval. Each frame is transformed

to the frequency domain and centered about the Cartesian

origin. We use the FFT domain Fk to determine the primary
envelope and mark the bounds. This region is where we do

our centricity calculation.

The envelope is selected using the following algorithm.

Algorithm 1. Centricity Envelope

(1) FFT the time frame and call it Fk.
(2) Set k equal to the frequency of the maximum peak.
(3) Move k ← k − 1 until amplitude transitions below

the standard deviation.
(4) Continue k ← k− 1 until we again transition above

the standard deviation, stop and mark position s.
(5) Repeat the same process to the right of k in the

positive direction and mark the end point e.

Algorithm 1 determines the bounds of the envelope. The region

[s, e] is known as the centric region. Once identified, we take

one of two actions; (a) if the last centroid is not known, we

mark the position c = (s+ e)/2, otherwise (b) we calculate

δ = sin−1(
|cj − cj−1|√

(A2 + (cj − cj−1)2
), (7)

where cj is the centroid of the current frame and A ∈ R is

the max amplitude of the envelope in decibels (this smoothes

angular comparisons). This has the effect of measuring the

angle between two successive frames with respect to the

centroid. The angles are added and averaged to compute the

centricity score. As an example, Fig. 2 illustrates a detection

where the algorithm is applied to a snippet of Beethoven’s
minuet in G with 6 sequential frames of 250 milliseconds each.

B. Centric Velocity

An additional quantifier can be combined with the centricity

measurement algorithm. This quantifier is called centric
velocity and works from the speed of movement between
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Fig.  2 Moving centric region on Fk at 250 ms per frame: At each frame 
we calculate the angle using (7)

frames. The value is easily computed using the concept of

physical displacement v = d/t where d = distance and t =
time. We measure centric velocity by determining the change

in frequency displacement (in Hz) between one frame and the

next. Velocity becomes
(Cj−Cj−1)

t and yields units of Hz/ms.

This measurement is combined with the centricity calculation

in our experiments.

IV. HSV SONIFIER

Sonification is a novel and somewhat rarely applied

technique. Perhaps this is due to the voluminous nature

of modern information not being suitable to a manual

analysis process. In this regard, the ability to automate

portions of the sonification pipeline may come in handy.

Sonification and Auditory Display include sub-disciplines in

Audification, PMSon (parameter mapping sonification) and

Model Based Sonification [13]. Each branch offers distinct

approaches to given problems, but retains shared constraints.

Human perception is powerful, but limited by time and

scope. Obviously, the purpose of audio transformation, in

this regard, is to allow for human consumption, but how

do we keep the sonification benefits (ie: finding useful

information) without overwhelming the listener? The process

begins by analyzing the stream of audio to find key

inflections where interesting changes occur. Fig. 3 illustrates

the proposed work flow which incorporates our architecture

into automated sonification feedback. When raw data are

received, the sonification algorithm feeds synthesized audio to

our automated quantification analysis. The analysis determines

which blocks of audio are relevant and responds accordingly

by notifying the U/I and sonifier appropriately on how to

proceed. The user is able to see and hear only interesting

sections of very large datasets.

The proposed architecture ensures only paternalistically

relevant information is prioritized to the listener. The full

Fig.  3 Partial automation of sonified waveform analysis using musical 
information geometry

Fig.  4 HSV sonification color mapping: Frequency ≡ Hue, Harmonic ≡ 
Saturation, Pitch ≡ Value/Brightness

extent of this architecture is not easily identified, however we

can experiment with its viability. As a use case, we developed

a sonification technique designed for exploitation of conic

color space. This exploit uses transitions involving color to

frequency mapping, motivated by geometric parametrization

of hue, saturation and value (HSV). When focusing on the

unit conic structure, Section 2.3.1 of [24] provides a sound

to frequency transformation based on colored hearing (a form

of synesthesia). This is a road map toward interpreting conic

space with respect to tone. We envision a frequency as a

parameter to a complex number, not unlike the Fourier series,

where a rotational coefficient accelerates a circular pattern

about the origin. In real space this equates to the velocity of

cycles of a sinusoid. There is an intuitive association with hue
as illustrated in Fig. 4 wherein hue is rotationally bijective

to color yielding a distinct map. We also know an increase

in frequency is psychologically related to brighter coloring

[24], thus we have a relationship with saturation and harmonic.

Finally, we use brightness (ranging from black to white) as an

additive element of intensity with respect to harmonic.

Let b = brightness, h = hue and s = saturation where

P = (h, s, b) ∈ [0, 1]3. We generate frequency space with the

mapping C : R3 → R, using the HSV Conic Sonifier equation

C(P ) = 2�(s+b)∗3�π (16.35 + h · 14.52) (8)

Note: we have chosen the maximum range of harmonic to

be 3. This is due to the fact that (1 + 1) ∗ 3 = 6 when

saturation and brightness are maximized. The human ear has a

resonance frequency at approximately 3 kHz which increases

sound pressure [15].

A. Audio Schematic

Sonifying an image using (8) requires a few post processing

steps before frequency is synthesized. The image is scanned
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from top-left to bottom-right and each pixel is mapped to an

HSV Sonifier solution. From there, run length encoding is

used to aggregate identical, adjacent frequency values so their

total representation is transferred to relative play time. This

process produces what we call an audio schematic. A side

effect of run length includes singularities and artifacts in the

distribution, hence it is not smooth. We developed an algorithm

that smooths the curve based on our needs.

Assuming Cartesian coordinates and a function of the

schematic curve f(x), we iterate over the x-axis in the

positive direction. Intuitively speaking, each vertical line

segment (x, 0) to (x, y) is homogeneously rotated in place

in the clockwise direction until the first intersection with a

subsequent line segment (x′, 0) to (x′, y′). The following hit
test determines intersection.

Hit(y) =

{
false y < (x′ − x)

true
√
y2 − (x′ − x)2 ≤ y′

(9)

Next, values below secant (x, 0) − (x′, y′) are mapped

according to the following

f(t) ←
{
0 f(t) < y′−y

x′−x (x
′ − x)

f(t) otherwise,
(10)

assuming t ∈ [x, x′]. What remains are the largest peaks and

residue. Residue is zeroed and we construct the final curve

by interpolating segments between non zero peaks. Fig. 5

illustrates this process.

Fig.  5 Stages of audio schematic smoothing under (9) and (10)

The algorithm preserves the gradient of the image to

a large extent retaining key inflections. This can be more

easily understood by viewing Fig. 6 which shows anecdotal

information as to the behavior of the sonifier on gradient

surfaces.

V. EXPERIMENTATION AND RESULTS

The theory proposed in this paper is difficult to envision

from a practical standpoint. We set out to show random data

that can be associated by musical geometry. As an experiment,

a database was created consisting of approximately 226
different images. The images were selected based on

homogenous content consisting of People, Shapes, Structures

and Surfaces. Some categories were further subcategorized.

For example, the category of Shapes contains Balls, Blocks,

Fig.  6 Audio schematic examples of gradient imagery

Category Total Category Total
People 39 Sporting Balls 31

Blocks 46 Curves 32

Squares 24 Structures 36

Surfaces 18

Total: 226

TABLE I
IMAGE EXPERIMENTATION DATABASE (META-DATA)

Curves and Squares. Table I provides a breakdown of the

image database content.

The experiment was done in the following way. We sonified

audio for every file in the database using the algorithm

from Section IV. Each audio file was classified using the

framework in Section II. Geometry curves are correlated via

Pearson coefficient and mapped to surface coordinates based

on clustering success. Fig. 7 illustrates the homogeneity of

clusters found for a given pass, where a pass consists of

correlating every curve with every other at different offsets

which is to say, comparing every audio file against every other

audio file and transitively, every image to every other image.

The x and y-axes represent the suggested offset and length to

be used for correlation between curves. We must understand

that each pass generates many clusters of varying consistency,

the cluster with the highest homogeneity is selected as the

z-value in the surface. These areas yield a set of solutions

to higher performance clustering that can be employed in an

application setting, over a brute force approach.

The duration of sonified audio was controlled using limits of

{1, 2, 5, 10, 15, 25, 35, 45, 60} seconds. We discovered a few

substantial clusters using 1, 2 and 3 seconds of sonified audio.

The 5 second block contains the most substantial clusters,

having uncontaminated groups of 3 to 16 images. Nearly every

uncontaminated cluster up to 10 seconds contains the same

image category, being that of Sports Balls. Table II shows a

subset of the best clusters found, which is to say, near full
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homogeneity of category at statistically significant sizes.

Fig.  7 Clustering success based on correlation of centricity quantified 
curves

We see a proliferation of image categories throughout the

data as a function of audio time. Our methodology generated

dozens of small to mid sized natural clusters. We have

provided some examples in Figs. 8 and 9. We call them natural
because they are driven solely by the data. When we examine

the surfaces (Fig. 7) we can see several uncontaminated

clusters in sequence over a specific offset, or length. Many

peaks contain sequential clusters of the same category with

differing content. We assume that nearby clusters with the

same content can be associated in a data driven capacity.

Presumably, an algorithm exists to find these and merge their

content into larger clusters. In either case, these common

groupings make the content readily accessible to a user

interface, allowing an operator to identify and associate data

quickly. This is ideal for searching large data spaces for

consistent patterns.

As far as the behavior is concerned, sporting balls appear to

have the most favorable outcome using this particular sonifier.

Notably, the image backgrounds are quite different, containing

mixed and noisy coloring for some and solid for others. It

seems clear a predisposition toward the color scale in our

gradient sonifier elicits the observed behaviors. The centricity

algorithm links transition in gradient to frequency movement

directly. The clusters of Block shapes (Fig. 9) are explained by

the apparent lack of curvature, which would naturally create a

contradictory equivalence class, thus sufficiently distinct and

similar audio synthesis. Lastly, but perhaps most interesting,

is the cluster of people, small as it may be. Fig. 10 shows

a set of completely disparate photos of single and multiple

humans. We conjecture this is due in part to the proliferation

of curved surfaces within the images and gradient of skin

tone. One final set of clusters is that of what were categorized

as Structures. Structures consists of buildings, mountains and

other natural phenomena. Fig. 11 shows one such cluster.

There are several small clusters of this type, all containing

buildings, homes or mountain views. The spurious nature of

sharp edges, combined with smooth transitions, would create

Cluster
Size

Category Homogeneity
% of

Total Category

1 Second Sonified Audio

8 Sporting Balls 100.00% 25.8%

3 Blocks 100.00% 6.5%

2 Seconds Sonified Audio

5 Sporting Balls 100.00% 16.1%

4 Sporting Balls 100.00% 12.9%

3 Seconds Sonified Audio

5 Sporting Balls 100.00% 16.1%

4 Sporting Balls 100.00% 12.9%

3 Sporting Balls 100.00% 9.7%

5 Seconds Sonified Audio

16 Sporting Balls 100.00% 51.6%

15 Sporting Balls 100.00% 48.4%

12 Sporting Balls 100.00% 38.7%

11 Sporting Balls 90.91% 32.3%

7 Sporting Balls 100.00% 22.6%

5 Sporting Balls 100.00% 16.1%

4 Sporting Balls 100.00% 12.9%

3 Sporting Balls 100.00% 9.7%

10,15,20,30,35,45 Seconds Sonified Audio

4 Structures 100.00% 11.1%

3 Structures 100.00% 8.3%

8 Blocks 100.00% 17.4%

6 Blocks 100.00% 17.4%

8 Sporting Balls 87.50% 22.6%

6 Sporting Balls 100.00% 19.4%

3 Sporting Balls 100.00% 9.7%

3 Squares 100.00% 12.5%

4 People 100.00% 10.3%

3 People 100.00% 7.7%

3 Blocks 100.00% 6.5%

4 Blocks 100.00% 8.7%

3 Curves 100.00% 9.4%

Large, Contaminated Clusters

29 People 44.83% 33.3%

29 People 44.83% 33.3%

21 Curves 42.86% 28.1%

21 Curves 42.86% 28.1%

21 Blocks 52.38% 23.9%

21 Blocks 52.38% 23.9%

TABLE II
EXAMPLE CLUSTERS FOR CENTRICITY QUANTIFIED IMAGERY

rare correlation opportunities with the sonifier which is likely

why these are small and somewhat disparate. One final point to

be made relates to sufficiently large contaminated clusters that

retain significant numbers of similar content. This can be seen

in the last subsection of Table II. For example, there is a cluster

of 29 elements and although nearly half are contamination, 13
images contain single and multiple people being associated by

the algorithm.

It is clear that several clustering solutions exist within the

parameter variations. We have seen a consistent changes to

cluster types and size as we modify the amount of synthesized

audio. This is expected, but the search for new cluster solutions
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Fig.  8 A natural cluster of various sports balls: There are 16 different 
images in this cluster from the 5 second sonification audio output

Fig.  9 Natural cluster of block shapes: There are 8 different images in the 
cluster from the 45 second sonification audio output

is very slow. An open problem is extended to examine

performance improvement and optimal solutions for parameter

selection which is to say, permutations of the information

manifold, distribution range, sonification time, search pattern

and correlation methodology.

There are clearly gaps in the clustering ability and some

categories are completely ignored, such as the Surface

category. The surface category contains various mathematical

manifolds. It is apparent that the musical centricity and HSV

sonifier do not express these types of images in a consistent

fashion.

We surmise the likelihood of larger and better quality cluster

manifestations under different parameter combinations. We

also know that segmentation length and width create a distinct

change in clustering (Fig. 7). An additional open challenge

involves the analysis of the clustering surface. There exists

a demarcation in clustering behavior above and below the

point where correlation length and width are equivalent. Why

the given pattern emerges and why such a distinct separation

Fig.  10 Natural clusters of people: The top four images are a cluster from 
10 second sonification; the bottom four are a cluster from 45 second

Fig.  11 Natural cluster of four structures from 20 seconds sonified audio

exists, remain unclear.

VI. CONCLUSIONS AND FUTURE WORK

Some conclusions can not be drawn from the

experimentation; however, we have shown that music

can be used to associate the content of imagery. We have

shown how it is possible to augment sonification architecture

as a viable path toward automation in the user experience.

We demonstrated the ability to quantify centricity and include

it as a predictor of segmentation within the information

manifold. We developed a sonifier and proved that it can
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be used to transform imagery into audio for statistically

significant content clustering. The proposed architecture

exists for “plug n play” purposes, allowing one to insert

different quantifiers and sonification algorithms. We surmise

that different sonification techniques will induce varying

outcomes for different image content. Further research is

necessary to determine the role played by our unique sonifier,

but we have shown musical geometry exposes a deeper level

of content analysis.

A. Future Work

Our research considers several alternative implications to

audio visualization and analysis; for example, the ability

to provide real time feedback. This is not dissimilar to an

electronic tuning device and we make no assumptions about

the audio’s similarity, composition, or musical relevance.

There are also implications in feedback for visually based

musical composition, signal detection and large data. One

final ulterior motive is the improvement of synaesthetic

visualization of audio (see [18], [25] for details).
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