
 

 

 
Abstract—Pervasive computing is a growing research field that 

aims to acknowledge human physical life routines (HPLR) based on 
body-worn sensors such as MEMS (Micro-Electro-Mechanical 
Systems) sensors-based technologies. The use of these technologies 
for human activity recognition is progressively increasing. On the 
other hand, personalizing human life routines using numerous 
machine-learning techniques has always been an intriguing topic. In 
contrast, various methods have demonstrated the ability to recognize 
basic movement patterns. However, it still needs to be improved to 
anticipate the dynamics of human living patterns. This study presents 
state-of-the-art techniques for recognizing static and dynamic patterns 
and forecasting those challenging activities from multi-fused sensors. 
Furthermore, numerous MEMS signals are extracted from one self-
annotated IM-WSHA dataset and two benchmarked datasets. First, raw 
data were processed with z-normalization and denoiser methods. Then, 
we adopted statistical, local binary pattern, auto-regressive model, and 
intrinsic time scale decomposition major features for feature extraction 
from different domains. Next, the acquired features are optimized 
using maximum relevance and minimum redundancy (mRMR). 
Finally, the artificial neural network is applied to analyze the whole 
system's performance. As a result, we attained a 90.27% recognition 
rate for the self-annotated dataset, while the HARTH and KU-HAR 
achieved 83% on nine living activities and 90.94% on 18 static and 
dynamic routines. Thus, the proposed HPLR system outperformed 
other state-of-the-art systems when evaluated with other methods in 
the literature.  
 

Keywords—Artificial intelligence, machine learning, gait 
analysis, local binary pattern, statistical features, micro-electro-
mechanical systems, maximum relevance and minimum redundancy. 

I. INTRODUCTION 

PLR recognition is becoming challenging for researchers 
in various practical domains such as pervasive computing, 

interactive learning, and pattern recognition. Such domains 
further involve various applications, including healthcare, 
security, surveillance, 3D interactive games, user-computer 
interaction, and fitness tracking [1]-[4]. Additionally, HPLR 
plays an essential role in user-to-user interaction and people 
skills, which provides vital information about a person, 
including identity, emotional state, and personality. 
Furthermore, a substantial amount of research is being 
conducted to advance the development of physical activity 
recognition via vision-based camera systems and body-worn 
MEMS sensors. In vision systems, different cameras are fixed 
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at monitoring locations to automatically recognize physical 
activities based on the series of images [5], [6]. However, 
despite its advantages, vision-based systems have several 
limitations in some scenarios, such as continuous human 
movements over long-range distances, which requires 
uninterrupted monitoring of human activities [7]. On the other 
hand, MEMS-based inertial sensors have been gaining 
popularity as a feasible solution in different scenarios [8]. 
Therefore, the needs and demands for understanding and 
tracking human life routines via body-worn MEMS inertial 
sensors have progressed incrementally [9], [10].  

During the last decade, the technological advancements of 
MEMS with embedded chips have progressed rapidly alongside 
developments simultaneously in information and 
communication technologies (ICTs). These MEMS devices, 
including accelerometers, gyroscopes, and magnetometers, are 
miniaturized for use in HPLR [11], [12]. Furthermore, the raw 
data acquired from these body-worn MEMS inertial sensors can 
be used in state-of-the-art systems that perceive and recognize 
human physical activities via pattern recognition and machine 
learning algorithms.  

Body-worn sensors are more effective and suitable for 
continuous real-time monitoring in different scenarios, such as 
sports assistants, exercise monitoring, sleep quality analysis, 
heart rate monitoring, and elder care support [13]. For example, 
in sports assistants, these sensors provide speed tracking, 
energy level, and player's body fitness during physical training. 
Similarly, exercise tracking devices can keep track of particular 
workouts to conduct exercises more effectively. In the case of 
sleep quality analysis, inertial sensors can examine body 
movement patterns to determine your light and deep sleep. This 
information is essential in helping users recognize sleeping 
disorders as soon as possible for further treatment. The 
abovementioned applications promote the research for physical 
activity recognition via body-worn sensors. This paper uses 
three benchmark datasets, including our self-annotated 
benchmark dataset, IM-WSHA, for HPLR recognition. 
Annotated datasets like these have been shown to play a crucial 
role in promoting research across various data synthesis 
mechanisms [14], such as signal processing, wearable 
computing, computer vision, speech recognition, and pattern 
recognition. Additionally, we used a publicly accessible 
benchmark dataset named HARTH, collected under free-living 
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settings, and KU-HAR, which captures heterogeneous life 
routines. The most important contributions of our study are: 
• The proposed HPLR framework is based on multiple 

aspects, such as data acquisition from sensors, signal 
normalization, denoising, features engineering (such as 
statistical, LBP, ARM, AF, and ISD), feature selection, and 
classification. 

• Features from multiple domains are utilized on the MEMS 
signal for a human daily life routine motion pattern. It 
assisted in determining the optimal results from the 
proposed HPLR proposed system. 

• Maximum Relevance and Minimum Redundancy (mRMR) 
can distinguish important features precisely, which is 
enough to optimize the HPLR model's robustness and 
effectiveness. 

• A comprehensive experimental analysis is conducted on 
two benchmark datasets (HARTH and KU-HAR) and one 
self-annotated dataset (IM-WSHA). Experimental results 
have shown that the proposed HPLR framework has 
achieved significant results compared to other state-of-the-
art systems. 

The remaining part of our work is organized as follows: 
Section II presents the background research and related work 
study. The proposed system methodology, including data 
acquisition, denoising, feature engineering, feature selection, 
and classification, is described in Section III. Section IV 
discusses the comparative analysis of our experimental results 
of three benchmark datasets. Finally, Section V reports the 
conclusion with future direction. 

II. RELATED WORK  

Extensive research has been conducted on the HPLR system, 
resulting in the development of numerous techniques based on 
various considerations [14]. Consequently, several orthogonal 
parameters can be employed to categorize the proposed 
techniques. General classification requirements are based on 
the following type of information: i) data used to build the 
system, ii) the machine learning method to analyze the 
augmented signal, and iii) the type of sensors utilized to capture 
the augmented signal to be filtered. The data used to develop 
the classifiers split the technique into three primary classes: 
data-driven, knowledge-driven, and hybrid. 

A. Human Activity Recognition (HAR) Personalization over 
RGB Systems 

In RGB systems, numerous researchers have implemented 
RGB-based frameworks, primarily utilized in health and 
security-based systems for tracking and recognizing 3D 
locomotion and behaviors of humans.  

Ni et al. [15] introduced an intelligent home tracking system 
with a benchmark database based on integrating an RGB 
camera and a depth sensor. In addition, this dataset intends to 
stimulate additional research on HAR via multi-fused sensors. 
Furthermore, two feature extraction methods for activity 
tracking have been designed that fuse color and depth 
information conventionally. In another study, Crispim-Junior et 
al. [16] present and thoroughly evaluate a fully operational, 

knowledge-based model for recognizing the human routines of 
elderly individuals. In addition, the approach integrates a 
constraint-based taxonomy language for modeling daily life 
activities with a strong pipeline for detecting and monitoring 
individuals based on color-depth data. Furthermore, the 
introduced method significantly surpasses and permits the 
modeling and tracking of prolonged and challenging scenarios 
characteristic of real-world settings. However, the main 
limitation of this work is the ambiguity at the low-level data and 
conceptual level, how to combine numerous sensor data 
effectively, and how to enable the autonomous detection of 
cognitive diseases using behavioral data. 

Wu et al. [17] combined different benchmark RGB-D 
databases to design a large-scale HAR dataset. In addition, a 
two-tier hierarchical-based system is introduced for the massive 
dataset. All human life routines are classified into seven 
fundamental activities, subdivided into various sub-activities. 
Furthermore, they analyzed three handcrafted feature methods 
on the acquired dataset. The evaluation result has shown lower 
results on publicly integrated datasets which highlights the 
concerns of the massive dataset. 

Moreover, the three handcrafted features incorporated only 
depth information, disregarding the RGB signals. Gu et al. [18] 
employed a deep model to categorize human action routines. 
Initially, they abstract the depth MHIs for the HAR datasets, 
and then ResNet-101 is catered to the model. The experimental 
evaluation on two benchmark datasets indicated that a deep 
learning framework might learn the distinct features of human 
life routines. This study analysis demonstrated that MHIs could 
provide robust locomotion patterns for recognition. In addition, 
the deep learning framework can extract unique features from 
this. However, additional work is required to tackle the real-
time processing issue in the domain of HAR. 

Sharif et al. [19] provided an innovative method for 
enhancing human monitoring and life-log recognition. The 
proposed approach is comprised of two significant components. 
In the first phase, new uniform and EM segmentation are fused 
to detect multiple persons in provided video sequences. Then, 
abstracted textured and shape features were integrated based on 
their vector size. The proposed method has demonstrated visual 
and empirical accuracy. However, this study has a few 
constraints, such as occlusions, which are not tackled; thus, this 
concern must be addressed in future development. 

Additionally, using saliency to optimize the segmentation 
can be a better choice. Wu et al. [20] presented the SVM and 
HMM hybrid framework for human physical activity 
recognition. Initially, the author introduced combined features 
involving kinematic features, structural features, and different 
coordinate features. The significant experimental evaluation 
revealed that the SVM and HMM model is more accurate and 
feasible than the individual performance of SVM or HMM. The 
hybrid framework has attained a better recognition rate when 
compared with other systems. Nevertheless, there are a few 
things that could be improved in this work. First, data involved 
in the training were not occluded by an artifact, as the method 
does not account for occlusion problems. Next, some human 
activities require additional context information beyond human 
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posture. 

B. HAR Personalization over Inertial-Based Systems 

This section mainly emphasizes wearable inertial-based 
systems for HPLR. In the context of wearable sensors, MEMS 
inertial sensors have significantly contributed to the 
convenience and personalization of human daily life routines 
and motion recognition. In their attempts to develop human 
locomotion wearable gadgets, experts have incorporated a 
multi-fused inertial sensor to identify improved methods for 
quantifying and interpreting skeletal movements. Specifically, 
inertial sensors, including accelerometers, gyroscopes, and 
magnetometers, have played a vital role in collecting and 
analyzing human motion data. 

In this context, Ahmed et al. [21] proposed a hybrid feature 
selection method that accurately detects various human 
locomotion activities. These data are recorded from an inertial-
based smartwatch sensor. The introduced hybrid framework 
combines the filter and wrapper techniques which have figured 
significantly in extracting optimal features. Next, the acquired 
optimal characteristics are employed for validation tests via the 
support vector machines (SVMs). Furthermore, the hybrid 
system framework achieved significant results compared to 
other methods. This research can categorize input data; 
however, fusion with the IoT system will allow this model to 
use controllers and other gadgets for further analysis and 
development in the real world. Sunken et al. [22] utilized an 
SVM classifier to recognize human locomotion patterns. They 
used the USC-HAD dataset to extract six different features. The 
appropriate features are evaluated using random combinations 
of the statistical features. The optimal hyperparameters are 
attained using a grid search optimization technique. The 
proposed system achieved better results on one benchmark 
dataset. This research utilized only one benchmark dataset. 
More benchmark HAR datasets can also be employed with 
other techniques in this context. 

Tian et al. [23] proposed a novel approach for acquiring data 

from smartphone-based inertial sensors comprising 
accelerometers and gyroscopes. In addition, this study 
combines temporal features and wavelet coefficients to obtain 
accuracy-enhancing features. Xu et al. [24] introduced a unique 
approach to human activity monitoring by fusing 3-IMU 
sensors. In addition, multi-fused feature extraction from HHT 
was used to improve human activity detection. Finally, Subasi 
et al. [37] adopted data mining techniques in an IoT-based 
healthcare system to propose ubiquitous HAR. The proposed 
framework uses a dataset containing body motion and vital 
signs data for ten individuals with various profiles while 
conducting twelve life routines. The evaluation result 
demonstrated that the suggested system performs better and is 
efficient, robust, and dependable in providing m-Healthcare 
facilities during various activities.   

III. SYSTEM DESIGN 

This part presents a proposed methodology of the HPLR 
system with state-of-the-art methods and results. The proposed 
HPLR framework has employed the three-axis IMU data 
combined as input to the system. The initial phase comprised a 
preprocessing engine involving varied inertial signal data from 
accelerometers, gyroscopes, and magnetometers. First, these 
signals are enhanced through normalization, smoothing, and 
filtering techniques to reduce random noise emitted by abrupt 
movements. Further, we utilized different feature extraction 
techniques from different domains to retain better inertial signal 
values. Next, we determine the minimal optimized set of 
features using the maximum relevance and minimum 
redundancy (mRMR) approach that can distinguish important 
features precisely. Finally, we supplemented the feed-forward 
neural network, such as ANN, on the optimized feature sets of 
the HPLR classification framework. Fig. 1 displays the 
complete system architecture of the proposed HPLR 
framework. 

 

 

Fig. 1 Detailed overview of the proposed architecture via mRMR and ANN 
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A. Pre-processing of Raw Data 

Initially, we acquired data from one self-annotated dataset 
named IM-WSHA and two benchmark datasets, such as 
HARTH and KU-HAR datasets. All these datasets involve data 
from multi-fused inertial sensors. Inertial sensors combine data 
from accelerometers, gyroscopes, and magnetometers. 
However, there is the possibility of random variation in human 
motion that can generate sudden noise and impact the strength 
of the signal. As a result, to preserve the inertial signal strength, 
we apply z-score normalization [25] and median filter 
techniques to smooth the data for further processing. 

A Z-score-based normalization is an arithmetic estimation of 

a number's association with the group's mean. In addition, Z-
scores are generally calculated via the standard deviations (SD) 
of a set of data from their respective averages. As a result, the 
z-score indicates that the score is equivalent to the group's mean 
score. On the other hand, we utilized a third-order median filter, 
which is used as a denoising setup that handles the unwanted 
motion of IMU data without compromising essential data.  

 

𝑍𝑠𝑐𝑜𝑟𝑒 ൌ ሺିఓሻ

ఙ
          (1) 

 
where μ and σ are the mean and SD of the sample group, 
respectively. 

 

 

Fig. 2 Preprocessing Engine: IMU signal with raw data and smooth (normalized and filtered) data for nine human life routines on the HARTH 
dataset 

 

B. Feature Extraction Pool  

Examining and evaluating sensor data characteristics is vital 
to establish a representation that precisely represents its aspect. 
In addition, there is no detailed framework in HPLR that 
enables the expert-driven development of a generic feature 
representation that would elaborate the intrinsic process that 
HAR tackles. Consequently, the sophisticated HAR features 
comprise more or less comprehensive, commonly heuristic-
driven interpretations of the unprocessed signal. 

1. Statistical-Based Features 

We employ the statistical measures described in [26]. In this 
context of inertial signal, we incorporated variance, mean, 
energy, skewness, and kurtosis features. The mean is the 
averaged IMU reading in a specific time interval, whereas the 
variance indicates the augmented signal's strength. Energy 
reflects the inertial signal periodicity. 

2. Local Binary Pattern 

The LBP feature is extensively used in image sequences for 
feature acquisition. In addition, LBP is effective as a local 
visual feature descriptor. It can efficiently acquire spatial 
structure and precisely analyze local patterns. Our study 
evaluated the acquired augmented signals, and features were 

abstracted via the 1D-LBP technique. 
In our work, the 1D-LBP is designed by comparing each 

signal value to its existing and next neighbors. The binary result 
acquired from the evaluation is then transformed to a decimal 
number to generate 1D-LBP labels for each value. To generate 
a binary string, the neighbor was picked up to point. Next, the 
center point (Pc) was selected to the p/2 both before and after 
the center value. These steps are carried out at every location 
along the signal. Signals with a frequency range of 0 to 255 
were generated by using this approach. These are known as 
binary patterns. 

 
x = Pi - Pc             (2) 

 
   LBP ሺIMUሻ ൌ ∑  ୰

୧ୀ SIMU ሺxሻ2୧      (3) 
 

𝑆IMU ൜
1,  x   threshold 
0,     x ൏  threshold 

 

 
where ‘x’ represents the neighbors and centroid. 

3. Auto-Regressive Model 

The autoregressive (AR) model is employed to represent the 
time series inertial signals of the two benchmark datasets 
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comprising different static and dynamic activities [27]. The AR 
model of a stochastic process is determined as follows: 

 
𝑥ሺ𝑡ሻ ൌ ∑  

ୀଵ 𝑎ሺ𝑗ሻ𝑥ሺ𝑡 െ 𝑗ሻ  𝜀ሺ𝑡ሻ,       (4) 
 
where 'a' denotes the model's coefficients, 'n' represents the 
order of the model, and 𝜀ሺ𝑡ሻ shows the resultant uncorrelated 
error. 

The inertial signal was subjected to AR and partial AR to 
evaluate this. In addition, these methods are a measurement of 
how closely an inertial signal sets a time-shifted version.  

4. Intrinsic Time Scale Decomposition (ITD) 

The ITD approach was developed to address several 
shortcomings of the empirical mode decomposition method 
(EMD). ITD is an adaptable and data-driven technique. 
Additionally, it can decompose a sophisticated inertial signal 
into numerous proper rotation components and a residual. 
Compared to the EMD method's shifting method, a benchmark 
operator R is developed to abstract an inertial signal from a 
signal and verify that the residue is a proper rotation. Thus, the 
inertial Xa can be shown as: 

 
𝑋 ൌ ℒ𝑋  ሺ1 െ ℒሻ𝑋 ൌ 𝑅  𝐻     (5) 

 
where ‘La = ℒ𝑋’ implies the baseline inertial signal. Ha 

represents a valid rotation. 

C. Maximum Relevance and Minimum Redundancy (mRMR) 

The mRMR feature selection technique is widely used in 
various research disciplines. It intends to attain significant 
classification performance by minimizing feature repetition and 
maximizing feature relevance to the main class [28]. In 
addition, the algorithm is a filter-based technique for selecting 
features that integrate minimum redundancy and maximum 
relevance into a single function (see Fig. 3). Using an iterative 
selection technique, these conditions are merged by computing 
the mutual information to determine the degree of relevance and 
redundancy [9]. For example, the mutual information from 
feature fa associated with fb can be shown as: 

 

𝐼ሺ𝑓; 𝑓ሻ ൌ ∑  , 𝑝ሺ𝑖, 𝑗ሻ𝑙𝑜𝑔 ቀ
ሺ,ሻ

ሺሻሺሻ
ቁ        (6) 

 
where x indicates all the probabilities of fa values and j 
represents all the probabilities of fb values. Then, the minimum 
redundancy can be demonstrated as: 
 

𝑚𝑖𝑛𝑅ሺ𝐹ሻ, 𝑅 ൌ
ଵ

||మ ∑  ௫ೌ,௫್∈ி 𝐼ሺ𝑥, 𝑥ሻ     (7) 

 
where ‘F’ is the predicted feature subset, |F| can be represented 
as ‘m’, which indicates the total number of features in F. Next, 
the maximum relevance can be presented as: 

 

 𝑚𝑎𝑥𝐺ሺ𝐹, 𝑐ሻ, 𝐺 ൌ ଵ

|ி|
∑  ௫ೌ∈ி 𝐼ሺ𝑥, 𝑐ሻ      (8) 

 

 

Fig. 3 mRMR based optimized features for static and dynamic 
activities 

D. Classification: Artificial Neural Network (ANN) 

The ANN is proven to be a sophisticated and better 
framework applied to image and scene data. ANN is a model 
for managing data that replicates the function of the human 
brain’s nervous system. In addition, ANNs are adaptable 
algorithms that can learn to solve challenging problems based 
on training data involving a collection of input-output pairs 
[29]. They can be incorporated to do tasks such as classification 
and prediction. 

An ANN comprises neurons, which are interconnected 
processing units that generate an output. Two sorts of neural 
network learning approaches exist supervised learning and 
unsupervised learning. During the training stage, sets of pairs 
are submitted to the network. The entire network is trained 
repeatedly to achieve the required Mean Squared Error (MSE) 
and best generalize test inputs. Finally, we serve the optimized 
features vector to ANN for classification. Fig. 4 shows the 
model diagram of ANN. 

IV. EXPERIMENTAL EVALUATION AND SETTINGS 

This section provides a detailed overview of the three 
databases incorporated into the HPLR system. The 
experimental result and evaluation of these datasets are 
conducted to assess the performance of our HPLR system. 

A. Dataset Description 

The self-annotated IM-WSHA [30] has been acquired using 
three triaxial IMU sensors (MPU-9250) from 10 individuals 
with a balance gender ratio. The sensors were incorporated into 
the participant's wrist, chest, and thigh regions. It has been 
designed to monitor human personal locomotion in intelligent 
home environments during life routine activities, such as 
cooking, drinking, walking, exercising, reading a book, and 
many others. Each activity's total variable time for data 
acquisition is 45-60 seconds. 

The second benchmark (Human Activity Recognition 
Trondheim dataset) HARTH dataset [31] involves data from 
two accelerometers (Triaxial Axivity AX3). Additionally, the 
database was acquired from 22 participants placed on the lower 
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back and thigh regions. The activities comprise walking, 
shuffling, running, cycling, etc. 

The third benchmark KU-HAR [32] database includes 
samples from 18 distinct activity categories. These data were 
acquired from 90 volunteers aged between 18 and 34 years by 
attaching smartphones to their waists. The collected data 
include the signals of a triaxial accelerometer and gyroscope. 

B. Experimental Evaluation on Self-Annotated IM-WSHA 
Dataset 

In our self-annotated dataset, we employed a three-fold 
cross-validation strategy to assess the performance of our 
system. Fig. 5 presented the confusion matrix with 11 primary 
and complex routines of daily living, where a 90.27% mean 
recognition rate is achieved.  

 

Fig. 4 The model overview and diagram of Artificial Neural Network 
 

 

Fig. 5 Confusion Matrix of 11 physical life routines activities on the IM-WSHA dataset via ANN 
 

TABLE I 
HUMAN INTERACTION COMPARISON RESULTS OF THE PROPOSED METHOD 

WITH OTHER STATE-OF-THE-ART METHODS OVER IM-WSHA DATASET 

Frameworks  IM-WSHA (%) 

Bag of features [33]  84.50 

MS-DLD system [34]  87.15 

Sensor level fusion [35]  89.50 

Proposed HPLR 90.27 

Table I shows the comparison of the proposed system over 
benchmark dataset IM-WSHA. 

C. Experimental Evaluation of HARTH Dataset 

During experiments, it was found that interactions involved 
repetitive tasks, so we merged a few activities. In particular, 
shuffling, transport (standing), and standing are merged into the 
same locomotion activity into standing. Likewise, sitting and 
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transport (sitting) are combined into sitting. The classification 
findings for the HARTH datasets are presented as a confusion 

matrix in Fig. 6, indicating an attained recognition rate of 83% 
over nine physical activities. 

 

 

Fig. 6 Confusion Matrix of nine human locomotion activities on the HARTH dataset via ANN 
 

D. Experimental Evaluation of KU-HAR Dataset 

 

Fig. 7 Confusion Matrix of AAMAZ dataset over 11 actions: K1 = 
Stand, K2 = Sit, K3 = Talk-sit, K4 = Talk-stand, K5 = Stand-sit, K6 
= Lay, K7 = Lay-stand, K8 = Pick, K9 = Jump, K10 = Push-up, K11 
= Sit-up, K12 = Walk, K13 = Walk-backward, K14 = Walk-circle, 
K15 = Run, K16 = Stair-up, K17 = Stair-down, K18 = Table-tennis 

 
TABLE II 

HUMAN INTERACTION COMPARISON RESULTS OF THE PROPOSED METHOD 

WITH OTHER STATE-OF-THE-ART METHODS OVER KU-HAR AND HARTH 

DATASETS 

Frameworks HARTH (%) KU-HAR (%) Frameworks

SVM [31] 78.66 Random Forest [36] 89.50 

  RF [32] 89.67 

 - - - 

Proposed HPLR 83 90.94 90.94 

 

In the context of the KU-HAR dataset, Fig. 7 depicts an 
average accuracy of 90.94% over 18 static and dynamic 

activities. Similarly, Table II compares our proposed HPLR 
system with other state-of-the-art methods. 

V. DISCUSSION 

A comparison of the proposed system to other state-of-the-
art systems revealed that the performance of our HPLR system 
had outperformed other existing methods. Our application of 
the HPLR architecture generated sensor data with significant 
accuracy. Initially, we attached three triaxial IMU sensors to 
various body sites to obtain more accurate information 
regarding the orientation and rotation of different body parts. 
Initially, we employed z-score normalization and denoising 
techniques to smooth the data for data preprocessing. In 
addition, by utilizing various cues in distinct domains (such as 
statistical, LBP, ARM, and ISD descriptors), the HPLR system 
yields improved performance. Next, the attained features are 
optimized using maximum relevance and minimum redundancy 
(mRMR) to pick essential features. Additionally, routine human 
activities are classified using ANN, which achieves a greater 
mean recognition rate than other standard approaches. 

VI. CONCLUSIONS 

The sensor-based HPLR analysis has substantially gained 
attention due to the accessibility of pervasive devices. This 
research analyzes the utilization and incorporation of multi-
fused sensors for recognizing indoor and outdoor activities. We 
have proposed a HPLR Recognition system using an artificial 
neural network (ANN) optimized with mRMR. The 
experimental evaluation was assessed using one self-annotated 
dataset and two benchmark datasets. The evaluation of the 
proposed HPLR systems with other existing systems shows 
better performance. 

The proposed HPLR system applies to many real-world 
applications, including smart home systems, activity 
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recognition, surveillance system, and healthcare.  
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